Results for: beta
Event in Review: BentonvilleUP
This past weekend, the leaders of the urban air mobility industry gathered at BentonvilleUP, an event hosted by TransportUP, in Bentonville, Arkansas to share their progress and reflect on the current state of the urban air mobility industry. The event, which was co-hosted by Ben Marcus of Airmap, Cyrus Sigari of jetAVIVA, and Steuart Walton, was the second annual gathering...

Event in Review: BentonvilleUP

This past weekend, the leaders of the urban air mobility industry gathered at BentonvilleUP, an event hosted by TransportUP, in Bentonville, Arkansas to share their progress and reflect on the current state of the urban air mobility industry.
The event, which was co-hosted by Ben Marcus of Airmap, Cyrus Sigari of jetAVIVA, and Steuart Walton, was the second annual gathering of a select group of individuals who are defining the future of urban air mobility. Among other attendees included representatives from Joby Aviation, Porsche SE, Boom Aerospace, Verdego, Lilium, Volocopter, EHang, Uber, Pipistrel, Airbus, a number of venture capital firms, and more – the total attendee list included professionals from 70 companies.
The event opened Friday evening with a cocktail hour, airshow, and gala in one of the main hangars at Bentonville Municipal airport – complete with an amphibious Cessna Caravan and a Spitfire to complete the accouterment. Saturday morning, the event began with a jetpack demonstration by Richard Browning of Gravity Enterprises. Mr. Browning then kicked off the morning talks with an overview of his current technology and some advice from his journey through business, aerospace, and entrepreneurship.
Then, a number of urban air mobility specialists overviewed the status of their technology, their innovations, struggles, and achievements that have allowed them to stand out in the UAM industry through a series of lightning talks that spanned the greater part of Saturday. Among some of the largest announcements were those made by EHang and Pipistrel, and some attendees afforded their personal experience dealing with common regulators or technical challenges in efforts to progress the whole industry in lieu of individual gains.
Throughout the event, a number of tours were conducted of the surrounding area in a Huey helicopter, in addition to walking tours of the Crystal Bridges Museum of Art.
On Sunday, the lightning talks continued during the course of the morning. In the afternoon, there was an investor roundtable that sparked discussion toward the current and future state of the industry, the business activities that most drove investment interest, and the mechanics of long term positions in urban air mobility firms.
Here’s the opening video of the flying car conference:
The third annual event scheduled for fall of 2019 is already planned in an undisclosed location.
Why it’s important: BentonvilleUP marks the second in a series of annual conferences that are bringing the urban air mobility industry’s brightest minds together. The collaborative and personal nature of these conferences aides in the sharing of information and lessons learned between UAM companies that is helping to bridge infrastructure, regulatory, and public perception gaps that have been identified as the main hurdles in bringing commercial UAM solutions to widespread market application.
Bell and NASA Partner for UAV Development
NASA will be working with Bell Helicopter and others to overcome the current obstacles to commercial UAV (unmanned aerial vehicle) operation. On August 29th, it announced funding up to $11 million to work with Bell. NASA names these main obstacles as technological advancements, systems integration, and certification of aircraft and avionics. Through this collaboration, NASA and Bell hope to deliver new technologies for unmanned aerial systems including integrated Detect and Avoid (DAA)...

Bell and NASA Partner for UAV Development

NASA will be working with Bell Helicopter and others to overcome the current obstacles to commercial UAV (unmanned aerial vehicle) operation. On August 29th, it announced funding up to $11 million to work with Bell. NASA names these main obstacles as technological advancements, systems integration, and certification of aircraft and avionics.
Through this collaboration, NASA and Bell hope to deliver new technologies for unmanned aerial systems including integrated Detect and Avoid (DAA) and Command and Control (C2) technologies. Bell seeks to use the technologies it develops alongside NASA in its new Autonomous Pod Transport 70 (APT70). The APT70 is a tail-sitting VTOL with load capacity up to 70lbs, and a top speed up to 100mph. It vertically lifts into the air like a drone, and then rotates into a horizontal flight position to fly like a bi-plane using its built-in fixed wing. A near-final version of the APT70 will conduct a flight demonstration in 2020.
Bell showcased its prototype at XPONENTIAL 2018 aerospace show last May, positioning as having potential military use as well as commercial cargo use. In a military capacity, the ATP could eliminate the need for resupply by vehicle, bringing troops items like goggles, body armor, and batteries.
The collaboration between Bell and NASA will be managed at NASA’s Armstrong Flight Research Center in Edwards, California. Other partners include Textron Systems, Xwing, and the University of Massachusetts Amherst’s Center for Collaborative Adaptive Sensing of the Atmosphere (CASA). Bell will lead the design, development, production and systems integration of APT, while Textron Systems will supply command and control operations, Xwing will provide detect and avoid technologies, and CASA will provide weather avoidance technology.
Why it’s important: The Bell ATP70 is one of the first unmanned VTOLs featuring a fixed wing. Unlike many existing UAVs that carry payloads, it has the capability of horizontal flight, making it faster and more efficient, and giving it higher range. The development of technology and certifications for unmanned eVTOLs with fixed-wing capabilities paves the way for similar aircraft with passenger carrying abilities.
Bell will also be using the new technologies developed with NASA in its Air Taxi design. Learn more about the Bell Air Taxi here.
Japan’s Flying Car Team now includes Subaru, Boeing, and More
At the end of August, Japan began an initiative to jumpstart the flying car industry. It’s taken its first steps by actively recruiting Subaru, Boeing, Uber Japan, Airbus Japan, and more. Japan plans to have flying cars in the air by 2020. It’s Ministry of Trade, Economy, and Industry initiated meetings with both private and public sectors last month. In...

Japan’s Flying Car Team now includes Subaru, Boeing, and More

At the end of August, Japan began an initiative to jumpstart the flying car industry. It’s taken its first steps by actively recruiting Subaru, Boeing, Uber Japan, Airbus Japan, and more.
Japan plans to have flying cars in the air by 2020. It’s Ministry of Trade, Economy, and Industry initiated meetings with both private and public sectors last month. In the U.S, NASA is beginning to work with private companies on UAV (drone) mapping systems, but Japan is one of the first countries to move the focus to passenger-carrying eVTOLs.
While many refer to these new vehicles and services as flying cars, Japan prefers to refer to the new movement as a ‘mobility service’. With the initiative, Japan hopes to solve its plethora of ground transportation problems, which include heavy traffic, difficult-to-navigate mountainous regions, and remote islands.
The latest recruit to the Japanese flying car coalition, as of yesterday, is Subaru. Although not widely known, Subaru has an aerospace division as well as automotive. Specifically, it developed attack helicopters for the Japanse air force. It also designs and builds lightweight carbon composites for Boeing’s 767 and 777. As of 2015, it signed an agreement with Boeing to work on the 777X’s center wing box. It even has begun research projects for unmanned aerial vehicles and delivers a full trainer aircraft to the Japanese Ministry of Defense.
Japan hopes to complete a ‘roadmap’ for flying cars within its infrastructure by the end of the year. It has enlisted 21 companies total, including Toyota’s Cartivator, Japan Airlines, ANA Holdings, and Yamato Holdings. It held its Public-Private Conference for Future Air Mobility on August 29th.
Why it’s important: Japan’s addition of Subaru to the flying car initiative indicates the wide variety of companies and industries that will contribute. It also lends an extra layer of certainty and credibility to the flying car industry. Subaru’s choice to join the flying car force may send signals to other big auto industry players like GM and Volkswagen to start developing their own technologies.
A New Flying Car- JETCopter Design Revealed
JETCopter applies Jet-powered flight to Flying Cars. On September 4th, flying car startup JETCopter released its design for a new eVTOL. The JETCopter is powered by two central fans which then divert their airflow to four outflow points. Like other eVTOLS, the amount of power given to each output point can be manipulated to control vertical hovering and maneuvering. Once the JETCopter is...

A New Flying Car- JETCopter Design Revealed

JETCopter applies Jet-powered flight to Flying Cars.
On September 4th, flying car startup JETCopter released its design for a new eVTOL.
The JETCopter is powered by two central fans which then divert their airflow to four outflow points. Like other eVTOLS, the amount of power given to each output point can be manipulated to control vertical hovering and maneuvering. Once the JETCopter is in the air, its fixed-wing tilts for horizontal flight, and from there it operates much like a jet.
The jump to jet power enables a more continuous and powerful airflow stream. This could make for more advanced maneuvering. It also eliminates the presence of a suctioning force at the extraneous points, which would be much safer in urban environments. The JETCopter boasts extreme stats with plans for two 400 horsepower engines, a carbon fiber build, a top speed of 186mph, a range of 600 miles and a capacity of at least six seats.
JETCopter has a quick-to-market approach. Rather than designing its eVTOL from the bottom up, the company has developed a low-cost carbon composite fuselage for the body, and plans to use standard automotive engines to power the main fans. While the company is still developing a full concept on a mobile platform, it believes that the many of the components will not require much initial engineering investment.
JETCopter plans to release a prototype within two years and will show a mock-up at the Aero 2019 Aviation Exhibition in April.
Why it’s important: JetCopter’s distributed power concept opens up a new class of flying cars. New eVTOL designs may start featuring jet power points rather than rotor blades at every point. It’s still unclear whether Jet tech eVTOL’s would be used for air taxi or private services, but features such as higher ranges and speeds could add value to a higher end segment of the market; people who wish to travel further or faster. The wider the range of designs that exist, the more ubiquitous the flying car industry will become.
Preparing for Liftoff-Andrew Beebe and Joe Blair
Preparing for Liftoff Electric flight will transform our cities for the better, and it will happen sooner than you might think. by Andrew Beebe andJoe Blair There’s a revolution in the air. Literally, up in the sky. Winged devices and the necessary ecosystem around them are undergoing the biggest transformation since humanned flight began over 100 years ago. Technologists have promised “flying cars” for...

Preparing for Liftoff-Andrew Beebe and Joe Blair

Preparing for Liftoff
Electric flight will transform our cities for the better, and it will happen sooner than you might think.
by Andrew Beebe andJoe Blair
There’s a revolution in the air. Literally, up in the sky. Winged devices and the necessary ecosystem around them are undergoing the biggest transformation since humanned flight began over 100 years ago.
Technologists have promised “flying cars” for decades but the aircraft industry has failed to deliver. This time is different. Instead of cars with fold out wings, there is a new species of aircraft evolving — one that is small, agile, fast, all-electric, and emission-free. Most of them are eVTOL (electric vertical take-off and landing) aircraft, meaning they take off and land vertically like a helicopter and then glide horizontally on a fixed wing like an airplane.
These technical advancements are enabling a new vision for on-demand electric air taxis, allowing an entirely novel type of urban transportation modality that’s as affordable as renting a car or buying a train ticket.
In the near future, this industry could vastly change how and where we all live, work, and play. There are indeed threats and challenges to this vision, but the wheels are already in motion and the future is much closer than most people think.
I. How We Got Here
Military Development
As with many technologies, massive military investment played a role in advancing cutting edge aerospace technologies. Unmanned Aerial Vehicles (UAVs) used in the military and pioneered by companies like AeroVironment were critical in perfecting drone tech. While the initial use cases were militaristic in nature, the downstream effects catalyzed a commercial drone industry with world positive use cases — from helping cities more safely inspect bridges to delivering blood in Rwanda.
Energy Storage
Over the last decade, the explosive growth of mobile computing drove a radical reduction in weight while increasing the density of lithium ion batteries. In the beginning of electric flight, power wasn’t possible with lead acid ballasts sitting in a fuselage. But the advent of energy-dense, lightweight batteries brings with it hyper-efficient, “drive-by-wire” electric rotors in flight. Without the physical constraints of heavy, fossil-fuel driven drivetrains, rotors can be located strategically on the aircraft to maximize propulsion, minimize drag, and optimize the balance of the aircraft.
Sensors
After affordable, lightweight energy storage, the second leg of the stool was sensors. Starting with accurate and enhanced GPS, the explosion of low-cost accelerometers, machine vision, and detection devices collectively allowed drones to manage themselves in ways never before possible.
Software
Coupled with the right sensors, low-cost rotors, and lightweight composite structures, drones could finally manage themselves, or be remotely piloted. Anyone who has watched an NFL nighttime halftime show has seen extraordinary drone coordination feats which are largely driven by this type of software.
This trio of storage, sensors, and software came together to build today’s six billion-dollar commercial drone industry. Only ten years ago, it barely existed. Once drones are allowed to fly beyond visual line-of-sight, the market is expected to grow at an even faster pace.
II. Today’s Context
Urbanization and its Discontents…
The democratization of flight can’t come soon enough. Cities across the country, and even more so around the world, are choking on their own growth. Dense urban environments promised us efficiency and convenience, but in many cases have delivered congestion, inefficiency, pollution, and skyrocketing costs.
In order to address affordability, pollution, and congestion, the transportation paradigm will have to change. As living spaces and communities become more dynamic, commuting patterns will change, and cities will need greater flexibility. Public transportation infrastructure (like subways, commuter trains, and ever widening highways) can be inflexible and expensive. While mass transit will continue to be necessary, taking to the skies will help build a more adaptive and dynamic urban environment.
Clean, cost-effective air taxis will help support a new urban/ex-urban paradigm where commuting from many miles away is no longer a punitive prospect. People may no longer need to plan their housing needs around a specific rail terminal, and may no longer need to plan their weekend escapes in the face of walls of traffic.
The Innovators
There already major forces at work here, even with much of the activity flying under the radar.
- Lilium made a splash in 2016 with their Series A led by Nikolas Zenstrom of Atomico and the launch of their public flight video. Obvious Ventures subsequently invested in their $90M Series B in 2017, along with Tencent and others.
- Joby had maintained a low profile until 2018 when they announced a $100M financing led by Intel, including the likes of AME Cloud, JetBlue Technology Ventures, Capricorn Investment Group, and others.
- KittyHawk was completely hidden from public view until recently, and privately funded exclusively by Larry Page. They are working on two projects, a single-person recreational Flyer and a multi-passenger vehicle called Cora. They announced a partnership with the New Zealand government in 2018.
- Airbus’ Vahana project is a single-passenger vehicle called the Alpha One, developed by one of the leading teams from a large corporate player, and had their maiden flight in 2018. The amount of money Airbus has spent on this project is not public.
- Uber has made clear its intentions to play a significant role in the future of aerial ride sharing, hosting an annual conference called Uber Elevate, proposing guidelines for common standards, and partnering with traditional aircraft manufacturers who are also looking to get into the space. Uber aims to own the entire end-to-end experience for the consumer, whether traveling by ground, air, or sea.
Since the big funding announcements there have been several dozen other startups entering the urban mobility space, all with differing variations of vehicle design, flight mission, and business strategy.
There are other companies adding hybrid electric tech to traditional long distance commercial airliners, like Zunum (backed by Boeing and JetBlue) and Wright Electric (backed by EasyJet and others). Finally there is Boom, working on a supersonic jet (not electric, but interesting nonetheless).
Not since the time of Orville and Wilbur Wright has there been such a wealth of innovation in the aviation industry.
III. What’s Next?
Safety First
Safety is paramount for all stakeholders in the air taxi industry, including regulators, service providers, aircraft manufacturers, suppliers, and customers. Everyone is on the same team when it comes to safety. The world is watching, and we all need to make safety the number one priority if we want this industry to develop. Likewise, one unfortunate crash could ground all aircraft and snuff out the industry before it even gets started.
To that end, the rollout should and will happen gradually.
1. Crawl
During the certification process, aircraft will go through an extensive battery of tests to ensure the pinnacle of safety and reliability. Aircraft will be assessed in every possible scenario before any customer ever climbs aboard one. This is what regulators are best at, and already have the necessary processes and talent in place to make it happen.
2. Walk
Once certified, rides will be offered to the public in a limited way. Regulators will be evaluating safety of course, but will also ensure that ride providers are prompt, organized, and offer high quality service to their customers.
3. Run
Once the ride service has proven its ability to operate at the highest level, other routes will be opened up. A higher volume of flights from existing vertiports will be allowed. New vertiports (specifically for eVTOL) will open and new routes will be established.
4. Fly
The regulators approve autonomous air travel. Volumes increase, prices plunge, and urban flight becomes fully democratized with larger vehicles and longer flight distances. People start to rethink where they live, work, and play. For example, people who work in San Francisco may opt to live in the Sierra foothills. Whereas the commute previously took three hours, now it’s a more manageable 30 minutes. We expect this to change real estate prices, reduce traffic in cities, and make the world more accessible to more people.
Infrastructure
Step 1 — Leverage existing architecture
Existing helipads and airports are natural choices for initial air taxi routes, as they are already equipped with adequate physical space, air traffic control processes, and supporting personnel. Most people don’t realize that the helicopter transportation market is already $18 billion globally. For example, helicopter ride-sharing company Blade is operating flights between Manhattan, the Hamptons, and JFK Airport.
Step 2 — Build out new infrastructure (vertiports)
Once the aircraft is proven on existing infrastructure, the market will demand more routes, thus requiring the buildout of new infrastructure. The key requirements are access to charging, air clearances, and proximity to ground transportation. These vertiports will not require much investment, just the charging capability as previously discussed. In the early years, new vertiports will likely be built on city outskirts, thus allowing city-to-city hops while minimizing the need to fly over other infrastructure. Fortunately, for historic reasons, most cities are built near bodies of water, which provide ideal routes for air taxis. Real estate developers will soon realize how lucrative these infrastructure investments can be, and the private markets will play a meaningful role in opening up new routes.
Step 3 — Rooftop expansion
In the long term, vertiports will be built on top of existing buildings enabling hops from building-to-building within a city. This will happen but will likely be the last infrastructure use case. Multi-billion dollar companies will flourish long before this becomes a reality.
Air Traffic Management
Air traffic control systems work well for traditional air travel, but are ill-equipped to handle the air taxi paradigm. Today’s systems still rely on verbal communication, where air traffic controllers must connect directly with pilots to ensure deconfliction. In the early days, air taxis will rely on these systems as well, but as the volume of flights climbs, traditional air traffic control systems may soon become overwhelmed.
The drone industry has been working on a solution. Drones have a more immediate challenge as there is no pilot onboard to communicate with air traffic control. Thus, companies like Airmap have been working on UTM (Unmanned aircraft system Traffic Management). UTM software is rapidly becoming a critical requirement for any consumer or commercial drone, because it helps drone operators automatically request authorization for flights, checks air space restrictions or warnings, and ensures deconfliction with other aircraft.
As drones become more ubiquitous, air taxis may be able to piggyback on UTM thus allowing for an air traffic management system that automatically coordinates the operation of all types of aircraft in a safe and seamless manner.
A Note On Autonomy
In the short-to-medium term, air taxis will be piloted. This approach allows for standardized aircraft certification processes and air traffic control systems — and therefore faster commercial deployment.
However, in the long-term, the market will likely transition toward autonomous air taxis. As futuristic as it sounds, it is not a wildly challenging problem — and is a simpler matter to address compared to self-driving cars. First, there are fewer obstacles in the sky. Second, there is a whole other physical dimension to keep vehicles from hitting each other. And third, aircraft have been effectively “automated” for many years. Most commercial airliners have robust mid-flight “autopilot” functionality, requiring pilots only for outlier situations.
Of course, this new capability will require rigorous testing and a new certification protocol. However, we expect that autonomous air taxis will become commercially available sooner than expected.
IV. Recommendations
Shared Skies
Ford and GM don’t own highways, just as Airbus and Boeing don’t own airspace. Similarly, air taxi manufacturers and service providers must share the skies among each other and other types of aircraft. Routes should be open to any air taxi meeting regulator requirements. Dan Elwell, Acting Administrator at the FAA, reiterated the FAA’s goal of integrated airspace at the 2018 Uber Elevate conference.
Open Infrastructure
In the conventional aircraft world, both public and private airports exist. Private airports can restrict landings except in the event of an emergency. The early years may require privately funded vertiports, but publicly accessible vertiports should be opened up quickly. Whether funded privately by savvy real estate investors or publicly by transportation authorities, in the future we will see a tremendous number of vertiports accessible by a wide range of certified air taxis.
Common Protocols
Sharing and collaborating on protocols will ensure healthy competition and the fast growth of the industry. For example, if air taxi companies converged on a set of electric charging requirements then each vertiport would be robustly equipped to handle any existing and future aircraft. Similarly, convergence on air traffic management systems will ensure consistent awareness of where all other vehicles are and optimize traffic flow, thus providing better service for consumers. Regulators are already leading here and must continue assembling coalitions of the willing.
Community Collaboration
The air taxi industry will only be successful if the communities in which they operate are engaged early and if their needs are met. This means rides will be affordable for the vast majority of the community, not just the elite. This means vehicles will be quiet enough to not disrupt your conversation with a neighbor. This means flights will be spaced out and at the appropriate altitude so that your view isn’t marred by a ubiquitous swarm of aircraft. To this end, companies should co-design the service with communities and even facilitate public-private initiatives to kickstart the conversation.
By following these recommendations, the air taxi industry has a legitimate chance to thrive and realize its true world positive potential.
Flying Car Developer DuFour Adds Damian Hischier
DuFour already has successfully logged more than 50 hours on their electric airplane, the aEro1. Now, it is turning to Flying cars. Since 2015, DuFour has had the vision of an eVTOl and developed a fully capable electric airplane to flight-test many of the electric components. It’s aEro1 is capable of flying for up to one hour, multiple times per day. Damian...

Flying Car Developer DuFour Adds Damian Hischier

DuFour already has successfully logged more than 50 hours on their electric airplane, the aEro1. Now, it is turning to Flying cars.
Since 2015, DuFour has had the vision of an eVTOl and developed a fully capable electric airplane to flight-test many of the electric components. It’s aEro1 is capable of flying for up to one hour, multiple times per day.
Damian Hischier is a certified test pilot and holds an Airline Transport Pilot License with a Category 1 Flight Test Rating from the EASA. He flew more than 130 different aircraft types ranging from gliders up to airliners including 15 first flights of prototypes. He was also the test pilot for Solarstratos. Damian is one of the few civilian pilots trained to conduct new aircraft testing, which makes him invaluable to flying car companies like DuFour.
Hischier is from DuFour’s home in Switzerland. DuFour plans on using it’s eVTOL, the aEro2 to revolutionize rural transport in the Swiss Alps area. Visitors to the alps often stay in Zermatt, a small town near the mountains. They often have to travel three hours to get to Zermatt from Milan or Zurich by car. The trip by a flying car like the aEro2 would take between 22 and 30 minutes. DuFour plans to have a fully working prototype for testing by the end of 2020. Learn more about the aEro2 here.
Prior to joining DuFour last week, Hischier had been a test pilot, project manager, and pilot for over twenty years at four different aerospace companies. At DaFour, he will be serving as Chief Test Pilot and head of Certification. Hischier received his bachelor’s degree in software engineering and economics in 1993 from Fachhochschule Luzern.
Why it’s important: As the flying car industry develops, a demand for test pilots will flourish. Many companies are about to arrive at their prototyping stages and will need test pilots like Damian. It is important for everyone interested in the industry to understand who these test pilots are, where they can be found, and what certifications they must have to verify new aircraft.
SkyRyse Air Taxi to Launch in Tracy, CA
On August 28th, a new company called SkyRyse launched. SkyRyse is a new a air taxi statrup featuring a single-rotor helicopter with advanced tech features. It plans to launch air taxi services by 2019. The SkyRyse helicopter takes a major step toward autonomy for air taxis. It paves the way for the future of flying cars. The SkyRyse features an...

SkyRyse Air Taxi to Launch in Tracy, CA

On August 28th, a new company called SkyRyse launched. SkyRyse is a new a air taxi statrup featuring a single-rotor helicopter with advanced tech features. It plans to launch air taxi services by 2019.
The SkyRyse helicopter takes a major step toward autonomy for air taxis. It paves the way for the future of flying cars. The SkyRyse features an advanced piloting system with situational awareness and intelligence. Its system will be able to use data from other flights to provide safer and more efficient options. The software automates much of the flight control systems, taking the mental workload and room for error off of pilots.
Designed by experts from Tesla, Boeing, SpaceX, and Uber, SkyRyse has raised $25 million in seed funding. Mark Groden, CEO and Founder, envisions initial operations supporting city’s emergency response units, including law enforcement, search-and-rescue missions, and firefighters. He says, “Because the stakes are highest in emergency response situations when minutes can mean the difference between life and death, we’re launching SkyRyse Emergency Response to support governments and municipalities first, with plans to change how we get around our cities in the future.”
SkyRyse will begin operations in Tracy, California, and is based out of Silicon Valley. It’s backers include Venrock, Eclipse, Industry Ventures, Trucks VC, Cantos, and Engage Ventures.
Why It’s Important: While SkyRyse does not feature DEP (distributed electric propulsion), it’s launch marks a huge step in the right direction for air taxi vehicles. SkyRyse is quick-to-market approach to urban aviation mobility, using existing hardware to kickstart the industry. It’s launch promotes the acceptance of VTOLs as a usable form of transport, and pushes the technology of the industry further.
UberAIR will be in Japan, Brazil, France, Australia, or India
On Thursday, Uber Elevate finalized the list of potential international locations for its third city of operations of UberAIR. It includes Japan, Brazil, France, Australia, or India. Uber Elevate confirmed last year that its first two cities would be Los Angeles, California, and Houston, Texas. It also announced that it would enter in one international city. On Thursday, Uber shortened...

UberAIR will be in Japan, Brazil, France, Australia, or India

On Thursday, Uber Elevate finalized the list of potential international locations for its third city of operations of UberAIR. It includes Japan, Brazil, France, Australia, or India.
Uber Elevate confirmed last year that its first two cities would be Los Angeles, California, and Houston, Texas. It also announced that it would enter in one international city. On Thursday, Uber shortened the list of potential countries down to five: Japan, Brazil, France, Australia, or India. UberAIR originally meant to operate in Dubai as its third city, but Dubai changed its plans.
Last February, Uber CEO Dara Khosrowshahi met with the Union Minister of State for Aviation for India, Jayant Sinha. In this meeting, Sinha stressed the need for flying cars in India, and presented Uber with a case for the large consumer base. UberAIR in India would service Mumbai, Delhi, or Bangalore.
This Monday, India released its ‘Drone Regulations 1.0’ last Monday, just one day before Uber’s Business Officer for Emerging Markets, Madhu Kannan, confirmed India as a potential country for UberAIR. While the ‘Drone Regulations 1.0’ do not specifically allow for e-commerce companies to deliver by drone, it launches India’s ‘Digital Sky Platform’. The Digital Sky Platform is similar to NASA’s UAM software. It is an Unmanned Aerial Vehicle management software that will create a ‘digital highway’ system for drones, allowing users to submit flight plans and understand where they can fly.
Why it’s Important: Uber’s naming of five cities as potential launch locations inspires competition among the cities to prepare for flying cars. This means that even those countries Uber does not choose will be ready for flying cars sooner rather than later. UberAIR may come into those countries next after its third city, or another operator may have a chance to enter. Either way, flying cars are coming to the international community soon.
Flying Cars to come to Japan Within a Decade
On Friday, Japan announced its partnership with Uber, Boeing, and Airbus to make flying cars a reality over the streets of Tokyo and Osaka by 2028. It also taking on Toyota’s Cartivator, Japan Airlines, and ANA Holdings, Yamato Holdings, and 14 other smaller companies to its task force. It also seeks to attain ¥4.5 billion ($40.4 million) in funding to support...

Flying Cars to come to Japan Within a Decade

On Friday, Japan announced its partnership with Uber, Boeing, and Airbus to make flying cars a reality over the streets of Tokyo and Osaka by 2028. It also taking on Toyota’s Cartivator, Japan Airlines, and ANA Holdings, Yamato Holdings, and 14 other smaller companies to its task force. It also seeks to attain ¥4.5 billion ($40.4 million) in funding to support private sector technology development.
While many in the U.S still consider the idea of flying cars very futuristic, Japan’s ministry of industry has already begun building a regulatory structure for the Vehicles. The ministry sees this as a great move for Japan, considering Japan’s major traffic problem, mountainous regions, and many remote islands. It also hopes that the novelty will boost the tourism sector, and set Japan as the forerunner in innovative transportation.
Japan is already heavily in-laid with a complex train transit system. The nightlife of Japan itself is often constrained by transit since trains only run between certain hours and taxi cabs are prohibitively expensive. (Prior to Friday’s announcement, the taxi cab system had a monopoly on urban transport and Uber did not have much success in major cities). While Japan’s train system is one the most advanced in the world, it is massively overworked. Every train is full to the brim, and the streets are constantly packed with traffic. Adding an extra layer of infrastructure using eVTOL technology could remove a lot of that pressure.
Why it’s important: Countries are starting to compete for first in eVTOL development. Japan’s move for transportation innovation could set it at the forefront of the developing industry, placing it in a powerful position for the coming years. Other countries will soon start to create their own initiatives to meet Japan’s standard.
The Zeva Zero Will Release a Prototype in October 2019
Founded in April 2018, Zeva Aero has a pioneering design for the Zeva Zero eVTOL. The Zero has a unique flat design, and aims to carry passengers completely door to door. While not many photos have been released of the Zeva, it features a tilting flight system. It can transition from a hover mode to a horizontal flight mode like...

The Zeva Zero Will Release a Prototype in October 2019

Founded in April 2018, Zeva Aero has a pioneering design for the Zeva Zero eVTOL. The Zero has a unique flat design, and aims to carry passengers completely door to door.
While not many photos have been released of the Zeva, it features a tilting flight system. It can transition from a hover mode to a horizontal flight mode like other VTOL designs. But in the Zero, the passenger tilts with the wing. The coin-like structure of the Zero improves vertical drag as it rises, and it’s minimalistic approach reduces weight. However, the Zero only carries a single passenger.
The Zero comes with the self dubbed ‘SkyDock’ docking system. SkyDock allows the Zero to park itself on the side of buildings themselves. This would enable passengers to exit the Zero to walk directly into their office or home–almost like a door that can open to anywhere. It eliminates the need for last mile transportation, making the journey from A to B even more efficient.
The Zeva team is still in the design phase, but is looking for $1.5 million in funding. It will produce a prototype for the GoFly competition sponsored by Boeing in October 2019. The GoFly Competion specifically only allows near-VTOL aircraft that can fit an eight-and-a-half foot sphere.
Zeva is led by Steve Tibbitts, Managing Director of Incubator FabLab Tacoma. FabLab provides a workspace and prototyping tools for innovators, artists, and DIY enthusiasts. Previously, Tibbitts worked as a director at Integrated Device Technology Inc, and as a Design Manager at Fox Electronics. The rest of the Zeva team includes electrical and mechanical engineers as well as experts in 3D design, composites, and software.
Why it’s important: As VTOLs become more prevalent many companies will begin to replicate past designs. Especially in a new industry, continual re-iteration is crucial to achieve the best design. Zeva’s unique design and docking system rethinks the utility of existing VTOLS even while they are still in their testing stages.
Los Angeles Announces New Mobility Challenge 2018
The city of Los Angeles has announced its support of the second annual New Mobility Challenge. The main categories of the two-day pitch competition are Smart Infrastructure, Shared Mobility, Electrification, Autonomous Vehicles, and Personal Mobility. Presented as part of the LaComotion Mobility Festival and sponsored by Metro, the New Mobility Challenge will award companies with cash prizes and support from LA’s best...

Los Angeles Announces New Mobility Challenge 2018

The city of Los Angeles has announced its support of the second annual New Mobility Challenge. The main categories of the two-day pitch competition are Smart Infrastructure, Shared Mobility, Electrification, Autonomous Vehicles, and Personal Mobility.
Presented as part of the LaComotion Mobility Festival and sponsored by Metro, the New Mobility Challenge will award companies with cash prizes and support from LA’s best new venture investor networks and incubators. Matt Peterson, President and CEO of the Los Angeles Cleantech Incubator (LACI), mentioned, “Los Angeles is the epicenter of innovation for creating a zero emissions mobility future”.
The Electrification finalists are electric aircraft developer Ampaire, ConnectMyEv for autonomous EV charging, and Advanced Vehicle Manufacturing,
Ampaire developed the Tailwind, a commercial electric aircraft. The Tailwind is not a eVTOL, but has similar goals such as noise reduction, efficiency, and environmental impact. Ampaire’s work could mean great steps forward for the certification and social acceptance of electric aircraft.
Of interest as well is ConnectMyEv. As noted in the Uber Elevate white paper, eVTOL operators will most likely place their ports on tops of large buildings like parking garages. Autonomous docking, charging, and ground management will be a major part of urban e-VTOL transport no matter who develops them.
Why it’s important: Los Angeles’ investment in a combination of autonomous solutions, electric capabilities, and flight show its commitment to finding high-tech aviation answers to LA’s mobility issues. The traffic issue in LA is the result of an overburned transit system at its capacity, and the emerging eVTOL industry could be an obvious answer. With the amount of interest generated by events like these, the market for eVTOL solutions will surely grow.
The Aerial Mobility Podcast
From air taxis to eVTOLs, hoverbikes, investor insights, and market analysis, TransportUP is bringing you weekly discussions with the most important, and interesting people in the industry.Latest Episodes Our Most Recent ArticlesJoby Receives CalCompetes Grant to Support California Facility Expansion and nearly 700 JobsNovember 26, 2023Air Chateau International to Purchase 100 Archer Midnight eVTOLsNovember 26, 2023Elroy Air Flies World’s First...
The Aerial Mobility Podcast
From air taxis to eVTOLs, hoverbikes, investor insights, and market analysis, TransportUP is bringing you weekly discussions with the most important, and interesting people in the industry.
Want more? Great! Listen to us on Spotify, iTunes or Google Play.
Want to hear someone be featured in the podcast, or just have some thoughts to share? Drop us a line at info@transportup.com
Astro Aerospace Partners with Kasaero GmbH
The Texas based eVTOL developer Astro Aerospace has established a partnership with German company Kasaero, which specializes in lightweight design, composites, and certifications. Astro Aerospace’s AA360 has reached the pre-order stage. Company stock is available on the public stock market. The AA360 features sixteen rotors, full autonomy, and an interior designed for 360-degree visibility. In May, Astro Aerospace recently acquired Passenger Drone, as well...

Astro Aerospace Partners with Kasaero GmbH

The Texas based eVTOL developer Astro Aerospace has established a partnership with German company Kasaero, which specializes in lightweight design, composites, and certifications.
Astro Aerospace’s AA360 has reached the pre-order stage. Company stock is available on the public stock market. The AA360 features sixteen rotors, full autonomy, and an interior designed for 360-degree visibility.
In May, Astro Aerospace recently acquired Passenger Drone, as well as hired drone expert and CEO of Uavionix Paul Beard. In June, it also partnered with American company Patterson Composites, which will be manufacturing the parts for the aircraft.
This week, it announced its partnership with Kasaero, which plans to create an unmanned version of the AA360 meant for carrying cargo in urban areas. Astro Aerospace commented, “Kasaero is an aviation R&D company specializing in lightweight design, composite technology and certification.”
Why it’s important: Astro Aerospace’s choice to partner with Kasaero could mean that Astro intends to attain international certification for its aircraft. It is likely they are planning on targeting a German and European market as well as the U.S.
Source
- UAS Weekly
Bell’s Patent Application May Reveal Air Taxi Design
A patent filed by Bell Flight in January of 2018 may hint at the design of its air taxi concept. US Patent 2018/0208305 shows a three fanned air taxi that has tilting rotors – one on each wingtip and one at the tail of the aircraft – that would enable vertical takeoff and landing. Furthermore, the patent includes provisions for...

Bell’s Patent Application May Reveal Air Taxi Design

A patent filed by Bell Flight in January of 2018 may hint at the design of its air taxi concept.
US Patent 2018/0208305 shows a three fanned air taxi that has tilting rotors – one on each wingtip and one at the tail of the aircraft – that would enable vertical takeoff and landing. Furthermore, the patent includes provisions for electric charging that begins automatically when weight from the landing gear of the air taxi is sensed on the landing pad, along with other energy storage provisions including battery technology.
Bell Flight hasn’t released the full version of their eVTOL yet; only teaser videos and a mock-up of what the cabin of such an aircraft could potentially look like. Additionally, there is no indication from Bell when the full design will be unveiled.
Why it’s important: While the specific design of the Bell Air Taxi is important, the higher level understanding of the mission and vision that Bell intends its product to serve is even more important. Since Bell Flight is a partner with Uber in their Elevate initiative, most likely any concept that Bell releases will adhere to the eCRM (common reference model) standards that Uber enacted in order to merge their booking technologies with air taxis that will service their desired market segment.
Learn more about the Bell Air Taxi Here.
Source
- Aviation Week
- US Patent Office
Workhorse Unveils New Brand Identity
Workhorse unveiled their new “Work Ahead” brand identity in New York City amidst the display of their SureFly flying taxi. Steve Burns, CEO of Workhorse, stated: “We are at a watershed moment as the worlds of alternative energy and transportation become further intertwined. As more brands enter the space, having a strong marketing platform that lets workers know that Workhorse...

Workhorse Unveils New Brand Identity

Workhorse unveiled their new “Work Ahead” brand identity in New York City amidst the display of their SureFly flying taxi.
Steve Burns, CEO of Workhorse, stated: “We are at a watershed moment as the worlds of alternative energy and transportation become further intertwined. As more brands enter the space, having a strong marketing platform that lets workers know that Workhorse is a brand they can get behind, because we get behind them, is more important than ever.”
Workhorse is one of the few flying taxi companies to have initiated the flying car certification process with the FAA in the United States.
“The SureFly is a two-place hybrid-electric VTOL multi-copter aircraft developed by Workhorse in Loveland, OH. It is designed to accommodate a pilot and passenger or a pilot and cargo, up to 550 pounds at a speed of about 70 miles per hour, for up to two hours, day or night. The aircraft utilizes a fly-by-wire flight control system designed to maintain the flight envelope of the aircraft.”
The SureFly has a ballistic parachute that works above 100 feet AGL in the event of major powerplant abnormalities – but also features eight rotors for redundancy; if one of them fails the aircraft can still operate normally.
The Federal Aviation Administration (FAA) accepted Workhorse’s application for Type Certification in June of 2018. The SureFly is anticipated to have a $200,000 MSRP.
Why it’s important: Workhorse was the first company to apply for and be accepted to commencement of the FAA Type Certification process, which means that they lead the flying taxi industry in certification efforts in the United States. Their path forward will be closely monitored by other flying car and taxi companies looking to gain intuition into best practices for navigating an entirely new certification space with the Federal Aviation Administration.
Source
- Workhorse Group Inc
- MarketsInsider
Share this: