Results for: nasa
NASA and Booz: The Joint Projection of Urban Aviation’s Future
NASA and Booz’s Executive Brief in Detail NASA and consulting firm Booz Allen Hamilton released a joint study on November 12 that outlined future projections of the urban aviation industry. The original executive briefing was presented on October 5th to NASA’s Aeronautics Research Directorate. Before we go into the details of the study, here are some of the key takeaways:...

NASA and Booz: The Joint Projection of Urban Aviation’s Future

NASA and Booz’s Executive Brief in Detail
NASA and consulting firm Booz Allen Hamilton released a joint study on November 12 that outlined future projections of the urban aviation industry. The original executive briefing was presented on October 5th to NASA’s Aeronautics Research Directorate. Before we go into the details of the study, here are some of the key takeaways:
- Airport Shuttle and Air Taxi markets have a total addressable market of over $500 Billion
- Air Ambulance services are not practical due to technology constraints – but hybrid aircraft may provide feasible alternatives
- Legal, regulatory, weather, public perception, and infrastructure hurdles exist
- 0.5% of the TAM, or $2.5 Billion, could be captured in the near term
- Constraints may be eased by government partnerships, industry collaboration, industry commitment, and existing legal and regulatory enablers

NASA and Booz Cited a few Key Trends for the UAM Industry, Including GPS Accuracy Improvements and AI Autonomy Advances
That’s the Summary. Here are the details.
A Strategic Advisory Group, or SAG, was assembled from prominent figures in the UAM, transportation, government regulations, infrastructures, public policy, and insurance disciplines – the SAG serves as an invaluable resource that enabled the information and advice of experts in their respective disciplines to offer their work and research toward answering some of the most pressing issues in the path towards wide spread UAM application. The study analyzed the following key components, each of which will be detailed below:
- Market Selection
- Legal and Regulatory
- Societal Barriers
- Weather Analysis
- Market Analysis
Market Selection
The study focused on a consortium of 10 cities across the United States to represent the larger industry.
Of potential interest in the selection of these 10 cities (and one city that has not been considered as heavily in the past) was that of Denver. Other cities that were selected, such as Los Angeles and Miami, have already been under consideration by real estate development companies and technology firm UAM development plans. However, the selection of Denver in this study is important – Denver has the potential for the lowest portion of air taxi shuttle trips within the FAA’s National Airspace System (NAS), which balances the perspective of a mostly urban-dominated, completely NAS-immersed UAM operating environment.
Legal and Regulatory
The largest legal and regulatory challenges that have the potential to slow urban aviation are regulations that already exist. In general, the framework for certifying aircraft already exists, but there are numerous legal barriers and gaps in the path to certification for some aircraft that may be classified as rotorcraft/mixed propulsion. Similarly, determining which regulations apply to what component(s) of air taxis is another challenge that has not yet been answered. Finally, system redundancy and failure management are critical safety considerations that will not be amended whatsoever for the sake of introducing a new type of aircraft such as an air taxi.
Fortunately, there are answers on the horizon to these challenges; for instance, ballistic parachute recovery systems are being developed for UAM systems. Additionally, the summary also cited that voluntary self-regulation (or even proposal of standards) may help to advance the regulatory process faster than relying solely on federal and state governments.
Societal Barriers
The largest concerns from the audience surveyed in this study (both younger persons aged 18-29 and older persons aged over 50) focused on credibility of pilots and the manufacturers of the aircraft. In general, those pilots/companies who were older attained a higher level of perceived experience, but gender and racial bias also played a role in affecting a passenger’s comfort with boarding a given flight. Passengers preferred intra-city hops instead of inter-city trips, and surprisingly, accepted a “hybrid flight deck” configuration where one pilot was onboard and the other “pilot” was automated.
Weather Analysis
Interestingly, the study also analyzed the position of weather in effecting UAM operations, and how in some locales the weather has enough of an adverse effect on air taxi services that their application could be placed in jeopardy. In general, cities in the Western United States had favorably weather, with the exception of impacts due to potential low visibility, high temperatures, and strong surface winds during summer thunderstorms. Cities like San Francisco suffer during the summer mornings when low-lying fog banks generate IFR conditions.

The weather has a greater effect on UAM than previously expected – here’s an example of the effects on UAM operations in San Francisco
In the Eastern United States, storms and low visibility are the primary limiting factors, especially during summer afternoons. In areas such as Texas, low level wind shear, high temperatures, and storms have large impact potential to UAM operations, storms in the summer, and low visibility in the winter. While the summary did not expound further, expect more details in the full report – and also an overview of just how much the TAM may be reduced by seasonal weather shifts.
Market Analysis
A Monte Carlo analysis was performed under a range of constraints to determine max usabilities – constraints involving customer’s willingness to pay, infrastructure limited, time of day limited, weather limited, and unconstrained scenarios. After performing these analyses, it was determined that only ~0.5% of unconstrained trips were captured after all other constraints were applied. This figure translates the $500 Billion as mentioned originally to the $2.5 Billion TAM. While the UAM market itself provides a lucrative magnitude of TAM, it is not without competitors – such as autonomous cars.
Additionally, analyses were conducted to determine the cost of air ambulance transports. After 10,000 iterations of this analysis, the estimated cost for an average trip was $9,000 for an eVTOL, and $9,800 for a hybrid – compared to $10,000 for that of a conventional helicopter transport. While there is a potential cost savings and practical benefit to eVTOLS as air ambulances (potential lives saved) the operational proficiency for eVTOLs will require time to establish – time that helicopters have had to demonstrate their applicability in situations that require extreme consistency. Another important consideration is the return time for an eVTOL, which is much higher than helicopters. While helicopters can be fueled with Jet-A in a matter of minutes, the charging technology for eVTOL’s is still not completely matured.
Key Takeaways
The best case scenario for air shuttle and air ambulance services includes a TAM of $500 Billion. In the near term, 5-seat eVTOL’s will cost ~$6.25 per passenger mile to operate. The high cost of infrastructure (and the current availability of infrastructure) are both large hurdles to overcome. Legal and regulatory analysis found that the air taxi, air ambulance, and air shuttle markets all face similar barriers. Additionally, psychological analysis and market surveys have proven that the general public is much more likely to board a piloted aircraft than an autonomous one. Finally, weather is a larger influencer in the applicability of air shuttle services than the industry has previously considered.
Why it’s Important: The joint Executive Summary between NASA and Booz Allen Hamilton has underscored many of the points made by numerous other consulting studies – but it also includes new considerations that will be important for the future development of the UAM industry, including the effects of return time for air ambulance operations and the effects of weather on all three markets. Stay tuned for the release of the full study and increased details on each of the topics addressed in the executive summary. The study emphasizes that a market of $2.5 billion may be reached in the short term (even after all the constraints are applied to market modeling) which is a large enough magnitude to continue to sustain the level of interest and dedication toward making this industry commercially operational in about five years.
NASA Partners with NextNav for Future Air Taxi Navigation Software
After its recent Urban Air Mobility Industry Day November 1st-2nd, NASA has announced its partnership with NextNav, a three dimensional mapping software.Unlike most traditional location services, maps by NextNav offer vertical accuracy as well as traditional GPS positioning. NASA plans to utilize NextNav’s Metropolitan Beacon System (MBS) as part of its testing efforts at its research center in Langley Virginia....

NASA Partners with NextNav for Future Air Taxi Navigation Software

After its recent Urban Air Mobility Industry Day November 1st-2nd, NASA has announced its partnership with NextNav, a three dimensional mapping software.Unlike most traditional location services, maps by NextNav offer vertical accuracy as well as traditional GPS positioning. NASA plans to utilize NextNav’s Metropolitan Beacon System (MBS) as part of its testing efforts at its research center in Langley Virginia.
NASA’s research center in Langley is named CERTAIN–City Environment for Range Testing of Autonomous Integrated Navigation. This space is designed to test all varieties of vertical lift technologies ranging from delivery drones to passenger air taxis.
NextNav’s Metropolitan Beacon System also makes itself unique by offering vehicle tracking in areas where GPS signal may not be available. The software itself is built around safely and reliably managing urban air mobility operations. The 3D geolocation location service also offers unique visualization of airspaces.
Rather than through satellites as with GPS, the NextNav Metropolitan Beacon System works through a series of transmitting beacons strategically positioned around urban areas to give a level of accuracy and reliability that GPS cannot provide:

“The MBS system is designed for secure, reliable and consistent 3D geolocation capabilities, which are important for autonomous systems” –Ganesh Pattabiraman, Co-founder and CEO of NextNav
While NextNav provides technology for geolocation, other companies like AirMap aim to provide air space management software for future urban air mobility infrastructure. AirMap, is a Santa Monica based startup which has raised $26 million in Series B funding and has been selected as the Unmanned Traffic Management (UTM) provider for the U.S’s first drone corridor. The company has been providing flight planning services for recreational and commercial drone operators since its founding in 2014.
Why it’s important: As NASA further builds its repertoire of technologies, urban air mobility services become closer and closer to reality. Although the FAA provides final certification for aircraft, NASA has been a driving force behind developing safety standards for these technologies. While CERTAIN may only run tests on UAV vehicles, testing on passenger VTOLs is not far behind.
NASA holds Urban Air Mobility Industry Day in Seattle
On Nov 1-2nd in Seattle, NASA held an Industry Day to prepare over 400 stakeholders for its upcoming Urban Air Mobility ‘Grand Challenges’. With this Industry Day, NASA hopes to connect itself with the wider industry, and to prepare all stakeholders for the first Grand Challenge, which will take place in 2020. The Grand Challenges are partly aimed at inspiring...

NASA holds Urban Air Mobility Industry Day in Seattle

On Nov 1-2nd in Seattle, NASA held an Industry Day to prepare over 400 stakeholders for its upcoming Urban Air Mobility ‘Grand Challenges’.
With this Industry Day, NASA hopes to connect itself with the wider industry, and to prepare all stakeholders for the first Grand Challenge, which will take place in 2020.
The Grand Challenges are partly aimed at inspiring the public, but will also put aircraft designs to the test in a wide variety of flight test scenarios including bulked landings, certain weather conditions, emergency landing situations, lost communications links, and normal operational flight.
Once vehicles have been approved for the challenge, NASA hopes that the event will lead for a regulatory framework for eventual certification. This both drives the industry forward, and means that any vehicle manufacturer who wants eventual certification should be at the 2020 Grand Challenge.
Manufacturer/Designers still have until November 16th to submit the NASA Grand Challenge Request for Information (RFI) if they wish to participate in Grand Challenge 1.
Guests at the November Industry Day also included companies developing key onboard systems, such as electric propulsion, detect and avoid or command and control; and providers of air traffic management systems for UAM aircraft operating over urban areas. NASA did not directly speak to how the Grand Challenge series compares to efforts like Uber Elevate, but NASA will be at the heart of certification and regulation issues.
In collaboration with Booz Allen Hamilton Consulting, NASA believes that by 2030, there will be as many as 500 million flights a year for package delivery services and 750 million flights a year for air metro services.
Why it’s important: With many efforts to push the UAM industry forward, it’s can be hard to understand why having such a wide range of them is important. Right now, the two biggest industry-gathering efforts are from Uber Elevate and NASA. It’s important to note that these two organizations serve different purposes: Uber most likely seeks like to streamline the business execution of VTOLs for the public, while NASA most likely seeks more to provide a baseline for safety and push for certification. Ultimately, it’s important for anyone wishing to be in the industry to fully understand both sides.
NASA to Host Urban Air Mobility Challenge Industry Day
NASA has made its stance in the new flying car industry clear by recognizing Urban Air Mobility (UAM) as the next step in aviation innovation. In 2020, NASA will commence the first of it’s series of urban air mobility ‘Grand Challenges‘. These challenges will focus on allowing companies with new flight technologies to successfully demonstrate full system safety. Part of...

NASA to Host Urban Air Mobility Challenge Industry Day

NASA has made its stance in the new flying car industry clear by recognizing Urban Air Mobility (UAM) as the next step in aviation innovation.
In 2020, NASA will commence the first of it’s series of urban air mobility ‘Grand Challenges‘. These challenges will focus on allowing companies with new flight technologies to successfully demonstrate full system safety. Part of the goal of this effort is to begin the process of public confidence and acceptance.
On November 1-2, NASA will host an ‘Industry Day‘ for urban air mobility. Here, it plans to gather all the players in the coming eco-system to outline and prepare for the 2020 Grand Challenge. According to NASA, attendees will be companies that are “highly motivated to participate and work with us to achieve a safe, commercial operating capability.”
“The convergence of technologies, and new business models enabled by the digital revolution, is making it possible to explore this new way for people and cargo to move within our cities,” – Jaiwon Shin, NASA Associate Administrator for Aeronautics Research.

An artist’s conception of an urban air mobility environment, where air vehicles with a variety of missions and with or without pilots, are able to interact safely and efficiently.
Another goal for the Grand Challenge is helping vehicles to achieve airworthiness certification. In collaboration with the FAA, vehicles will be put through performance tests both for normal flight and for emergency situations such as the loss of the motor. The first Grand Challenge will evaluate ground handling, taxi and takeoff, cruising capabilities and flight path changes, landing and turnaround in a variety of conditions, energy storage and battery capacity, and Management of critical systems failures.
“Now, our goals are to help develop and enable as much as possible what we like to think of as an entire ecosystem when it comes to Urban Air Mobility,” – Davis Hackenberg, UAM Engineer at NASA.
Why it’s important:
As an airspace traffic manager, NASA will play a crucial role in the new industry UAM industry. While the FAA determines certifications for aircraft, NASA will be greatly responsible for the new airspace management technologies. It has already spent the last six years working on its Unmanned Aircraft Systems Integration in the National Airspace System, which focuses on building a digital management ‘UAS’ system for unmanned commercial drones. The Grand Challenge event event takes the next big step for both aircraft certification and for UAS systems development.
Bell and NASA Partner for UAV Development
NASA will be working with Bell Helicopter and others to overcome the current obstacles to commercial UAV (unmanned aerial vehicle) operation. On August 29th, it announced funding up to $11 million to work with Bell. NASA names these main obstacles as technological advancements, systems integration, and certification of aircraft and avionics. Through this collaboration, NASA and Bell hope to deliver new technologies for unmanned aerial systems including integrated Detect and Avoid (DAA)...

Bell and NASA Partner for UAV Development

NASA will be working with Bell Helicopter and others to overcome the current obstacles to commercial UAV (unmanned aerial vehicle) operation. On August 29th, it announced funding up to $11 million to work with Bell. NASA names these main obstacles as technological advancements, systems integration, and certification of aircraft and avionics.
Through this collaboration, NASA and Bell hope to deliver new technologies for unmanned aerial systems including integrated Detect and Avoid (DAA) and Command and Control (C2) technologies. Bell seeks to use the technologies it develops alongside NASA in its new Autonomous Pod Transport 70 (APT70). The APT70 is a tail-sitting VTOL with load capacity up to 70lbs, and a top speed up to 100mph. It vertically lifts into the air like a drone, and then rotates into a horizontal flight position to fly like a bi-plane using its built-in fixed wing. A near-final version of the APT70 will conduct a flight demonstration in 2020.
Bell showcased its prototype at XPONENTIAL 2018 aerospace show last May, positioning as having potential military use as well as commercial cargo use. In a military capacity, the ATP could eliminate the need for resupply by vehicle, bringing troops items like goggles, body armor, and batteries.
The collaboration between Bell and NASA will be managed at NASA’s Armstrong Flight Research Center in Edwards, California. Other partners include Textron Systems, Xwing, and the University of Massachusetts Amherst’s Center for Collaborative Adaptive Sensing of the Atmosphere (CASA). Bell will lead the design, development, production and systems integration of APT, while Textron Systems will supply command and control operations, Xwing will provide detect and avoid technologies, and CASA will provide weather avoidance technology.
Why it’s important: The Bell ATP70 is one of the first unmanned VTOLs featuring a fixed wing. Unlike many existing UAVs that carry payloads, it has the capability of horizontal flight, making it faster and more efficient, and giving it higher range. The development of technology and certifications for unmanned eVTOLs with fixed-wing capabilities paves the way for similar aircraft with passenger carrying abilities.
Bell will also be using the new technologies developed with NASA in its Air Taxi design. Learn more about the Bell Air Taxi here.
Cyclorotor Conducts First Flight of Unique Unmanned Aircraft Configuration
Cyclorotor unveiled footage of the first flight of their Bumblebee2.0 concept with an Enhanced Propulsion system last week. The flight occurred at the end of August, 2023. This aircraft showcases a unique configuration, featuring four CR42 CycloRotors and an advanced flight control system. The launch of the outdoor flight campaign marks progress toward development of CYCLOROTOR’s unique aviation propulsion system....

Cyclorotor Conducts First Flight of Unique Unmanned Aircraft Configuration

Cyclorotor unveiled footage of the first flight of their Bumblebee2.0 concept with an Enhanced Propulsion system last week. The flight occurred at the end of August, 2023. This aircraft showcases a unique configuration, featuring four CR42 CycloRotors and an advanced flight control system. The launch of the outdoor flight campaign marks progress toward development of CYCLOROTOR’s unique aviation propulsion system.
The flight demonstration took place at a general aviation airport in Austria. CYCLOROTOR shares that their outdoor flight operations adhere to all applicable regulations set by the European Union Aviation Safety Agency (EASA), operating under the UAS operational authorization for the “specific” category.

Over the coming months, Cyclorotor plans to demonstrate the capabilities of its 360° thrust vectoring CycloRotors. These innovative propulsion units are based off of a design that’s over 100 years old and can challenge traditional aerial mobility industry aircraft configurations. However, not all are in agreement of the level of enhanced maneuverability, stability, and efficiency in flight offered by this unique configuration. CYCLOROTOR aims to systematically expand the flight envelope, further exploring and collecting data on the performance of their unique aircraft design.
While the debut of Bumblebee2.0 represents a unique application of a novel propulsion and lifting concept that is over a century old, it is important to note that this novel configuration may only partially permeate into limited applications in the drone industry. As with any unique configuration, widespread adoption often requires time and industry-wide acceptance in addition to successful, demonstrated performance.
Why it’s important: CYCLOROTOR has invited aviation enthusiasts, industry stakeholders, and the public to stay tuned for more updates as they continue to push the boundaries of what is possible in the world of aerial mobility. While their novel configuration is still not proven for widespread application, the team is making strides toward advancement of a unique type of aircraft and collecting data that can be used to improve future variants.
VoltAero Achieves Milestone Flight with Sustainable Aviation Fuel
VoltAero has achieved a significant milestone by conducting a flight using its proprietary electric-hybrid powertrain, fueled entirely by sustainable bioethanol from TotalEnergies. The landmark event took place at VoltAero’s development facility in Royan, France, and represents a giant stride towards greener and more sustainable aviation. The successful flight test utilized VoltAero’s Cassio S testbed airplane, serving as a crucial validation...

VoltAero Achieves Milestone Flight with Sustainable Aviation Fuel


VoltAero has achieved a significant milestone by conducting a flight using its proprietary electric-hybrid powertrain, fueled entirely by sustainable bioethanol from TotalEnergies. The landmark event took place at VoltAero’s development facility in Royan, France, and represents a giant stride towards greener and more sustainable aviation.
The successful flight test utilized VoltAero’s Cassio S testbed airplane, serving as a crucial validation step for both the electric-hybrid powertrain and the use of sustainable fuels. This accomplishment plays a pivotal role in de-risking the airworthiness certification process for forthcoming production models within the Cassio aircraft family.
Jean Botti, CEO and Chief Technology Officer of VoltAero noted that “based on initial results, we calculated a truly impressive CO2 reduction of approximately 80 percent while operating the Cassio powertrain in its electric-hybrid mode and with the internal combustion engine fueled by TotalEnergies’ Excellium Racing 100.” This development highlights the potential of Cassio aircraft to contribute significantly to the aviation industry’s decarbonization goals by replacing conventional Avgas 100 high-octane fuel.
The collaboration between VoltAero and TotalEnergies reflects a step toward the broader adoption of sustainable aviation fuels (SAF) in general aviation. Excellium Racing 100, derived from winemaking waste, has demonstrated its environmental benefits in automobile competitions and features a 65% reduction in CO2 emissions compared to its fossil fuel counterparts over its life cycle.
Joël Navaron, President of TotalEnergies Aviation, emphasized the company’s commitment to supporting aviation’s decarbonization objectives. TotalEnergies has initiated various actions, including the installation of electric charging stations for general aviation aircraft and a pilot program aimed at offering SP98-type fuel for compatible aircraft.
The Cassio family of aircraft, integrated with VoltAero’s patented electric-hybrid propulsion system, promises to revolutionize regional commercial operations, air taxi services, private ownership, and utility applications like cargo transport and medical evacuation (Medevac). With its unique hybrid propulsion system, Cassio delivers higher performance and significantly reduced operational costs.
Why it’s important: VoltAero’s latest achievement is desired by those in aerospace to become a more common occurrence in the next chapter of aviation, taking aerial mobility one step closer to more environmentally friendly outcomes. While the current supply of sustainable aviation fuel does not yet support full deployment of flights using SAF, compatibility with sustainable aviation fuels is crucial for future regional mobility aircraft designs.
Joby to Build eVTOL Manufacturing Facility in Dayton, Ohio
Joby has announced it plans to locate its first scaled aircraft production facility in Dayton, Ohio, the birthplace of aviation. Joby plans to build a facility capable of delivering up to 500 aircraft per year at the Dayton International Airport, supporting up to 2,000 jobs. The 140-acre site it has selected has the potential to support significant further growth over...

Joby to Build eVTOL Manufacturing Facility in Dayton, Ohio

Joby has announced it plans to locate its first scaled aircraft production facility in Dayton, Ohio, the birthplace of aviation.

Joby plans to build a facility capable of delivering up to 500 aircraft per year at the Dayton International Airport, supporting up to 2,000 jobs. The 140-acre site it has selected has the potential to support significant further growth over time, providing enough land to build up to two million square feet of manufacturing space. Construction of the scaled Ohio facility is expected to start in 2024 and it is expected to come online in 2025. Joby plans to use existing nearby buildings to begin near-term operations.
The State of Ohio, JobsOhio and local political subdivisions have offered incentives and benefits of up to $325 million to support the development of the facility, while Joby plans to invest up to $500 million as it scales operations at the site. Joby is also announcing today that it has been invited by the U.S. Department of Energy to submit a Part II Application for financing under the Title XVII Loan Guarantee Program, which provides access to low-interest loans for clean energy projects and would support the scaling of the facility.
Joby’s long-term investor, Toyota, who worked with Joby on the design and successful launch of the company’s Pilot Production Line in Marina, California, plans to continue to advise Joby as it prepares for scaled production of its commercial passenger air taxi in Ohio.
“We’re building the future of aviation right where it all started, in Dayton, Ohio,” said JoeBen Bevirt, Founder and CEO of Joby. “The Wright Brothers harnessed revolutionary technology of their time to open up the skies, and we intend to do the same — this time, bringing quiet and emissions-free flight that we hope will have an equally profound impact on our world.
“The U.S. continues to lead the way on introducing this technology, with unprecedented levels of support across all areas and levels of government. We’re incredibly grateful to Governor Mike DeWine, Lt. Governor Jon Husted, Senator Sherrod Brown, Senator JD Vance, Representative Mike Turner, and the team at JobsOhio for their support, as well as the representatives of the many other states we worked with during this process.
“Our partnership with Ohio is a great example of how successful public-private partnership amongst industry, local, state and federal government can bring important new technology to life.”
Joby plans to start hiring in the coming months, with early roles expected to focus on the build out of the scaled facility and the machining of parts that will initially be incorporated into Joby’s California low-volume production line.
Joby’s headquarters, research and development, and pilot production facility will remain in California.
Why it matters: Economic incentives from state and federal governments and Joby’s deep partnership with Toyota and the automotive industry make the rust belt the perfect location for a scaled eVTOL manufacturing facility. With the new jobs generated and ability to secure low-interest loans for the development of the site, Joby stands to quickly produce its eVTOL at rates up to 500/year.
Source: Joby Press Release
FAA authorizes Zipline for initial BVLOS drone operations
The FAA has authorized Zipline International, Inc. to deliver commercial packages around Salt Lake City and Bentonville, Arkansas using drones that fly beyond the operator’s visual line of sight (BVLOS). Part 135 operator Zipline uses its Sparrow drone to drop cargo packages via parachute and this FAA approval will enable the longest range drone delivery flights that the United States...

FAA authorizes Zipline for initial BVLOS drone operations

The FAA has authorized Zipline International, Inc. to deliver commercial packages around Salt Lake City and Bentonville, Arkansas using drones that fly beyond the operator’s visual line of sight (BVLOS).
Part 135 operator Zipline uses its Sparrow drone to drop cargo packages via parachute and this FAA approval will enable the longest range drone delivery flights that the United States has ever seen. Data collected from these operations will inform the FAA’s ongoing policy and rulemaking activities.

“Today we use 4,000 pound gas combustion vehicles driven by humans to do billions of deliveries across the country. It’s expensive, slow and bad for the environment. This decision means that we can start to transition delivery to solutions that are 10x as fast, less expensive, and zero emission,” said Keller Rinaudo Cliffton, CEO and co-founder of Zipline. “It means that Zipline hubs across the country can now go from serving a few thousand homes to serving hundreds of thousands of homes each year and millions of people, which will save time, money and even lives.”
Related: NASA Signs Space Act Agreement with Zipline
Okeoma Moronu, Zipline’s head of Global Aviation Regulatory Affairs, said: “We applaud the FAA for taking a major step to integrate autonomous drone delivery into the airspace. This will enable more commerce, new economic opportunities and greater access for millions of Americans. The FAA has incredibly high safety standards and it’s a testament to the entire Zipline team that our delivery drones are entrusted to fly and deliver at scale, over populated areas, in the most complex airspace in the world.”
Meanwhile, The FAA is focused on developing standard rules to make BVLOS operations routine, scalable and economically viable. The agency chartered the Beyond Visual Line of Sight Aviation Rulemaking Committee on June 9, 2021 to provide safety recommendations to the FAA. The FAA’s long-term goal is to safely integrate drones into the National Airspace System rather than set aside separate airspace exclusively for drones.
Why it’s important:
The FAA’s role in enabling BVLOS operations is pivotal to the future of not only small-scale drone delivery operations, but also passenger urban air mobility. By embracing and regulating this technology, the FAA is paving the way for safer, more efficient, and sustainable urban transportation. The benefits are clear: improved safety, reduced congestion, economic growth, greater accessibility, and a leading position on the global stage.
As we look to the future, it is evident that BVLOS operations are not just a regulatory necessity but a key enabler for the realization of UAM’s potential, promising a brighter and more connected urban landscape for generations to come. While some eVTOL aerial mobility manufacturers and operators are currently pursuing onboard pilot aircraft configurations, it’s inevitable that future variants will converge on mostly autonomous or remotely-piloted operation.
AI’s Role in Predictive Flight Path Monitoring for Aerial Mobility
Innovation is soaring to new heights in aerial mobility, and recent advances in artificial intelligence (AI) are challenging the ways traditional methods of flight path monitoring. While there is the potential to significantly enhance safety and efficiency in our increasingly crowded skies, there are also challenges related to how cutting-edge AI technologies can be safely and responsibly applied to new...

AI’s Role in Predictive Flight Path Monitoring for Aerial Mobility

Innovation is soaring to new heights in aerial mobility, and recent advances in artificial intelligence (AI) are challenging the ways traditional methods of flight path monitoring. While there is the potential to significantly enhance safety and efficiency in our increasingly crowded skies, there are also challenges related to how cutting-edge AI technologies can be safely and responsibly applied to new aircraft.

The Challenge of Aerial Mobility
Aerial mobility continues to make inroads on the path to widespread certification and utilization of aircraft to decongest urban areas and more efficiently transport passengers the last 50nm of their trips. With the rapid growth of drones, air taxis, and autonomous aircraft, cities around the world are embracing the potential for faster, cleaner, and more efficient transportation. However, this comes with its own set of challenges, particularly in managing and coordinating the movement of numerous airborne vehicles in urban environments.
AI-Powered Predictive Flight Path Monitoring
AI-driven predictive flight path monitoring has a potential to be a game-changer in this space, but with serious complications if implementation isn’t nearly flawless. AI algorithms, empowered by deep learning and real-time data analysis, enable aerial mobility systems to anticipate and adapt to changing conditions. A potential rosy future could include:
- Collision Avoidance: AI algorithms can predict potential conflicts between aerial vehicles and suggest alternative routes to avoid collisions. This proactive approach significantly reduces the risk of accidents, making urban air travel safer for everyone.
- Weather Forecasting: AI can process vast amounts of weather data in real-time, allowing aircraft to adjust their routes to avoid turbulence, storms, or adverse conditions. This not only enhances safety but also ensures smoother and more comfortable rides for passengers.
- Traffic Management: AI-powered traffic management systems can dynamically allocate airspace and landing zones, optimizing routes to minimize congestion and delays. This promotes efficient use of airspace, reducing travel times and environmental impact.
- Predictive Maintenance: AI can predict maintenance needs for aerial vehicles by analyzing sensor data. This preemptive approach ensures that aircraft are in optimal condition, reducing the risk of in-flight mechanical failures.
While the above list of advances sounds incredibly convenient, it also reflects what many sight as an idyllic view of AI’s implementation in aerial mobility. There are numerous challenges to face, including sporadic, erratic flight paths from other aircraft, regulatory integration and certification, as well as ethical and privacy concerns, especially for those not wanting the data from their flights to be shared for privacy reasons. Finally, the methods by which these algorithms are trained must be ironclad, and evasive actions cannot also be prescribed in situations where immediate intervention is necessary.
As many OEMs adopt hybridized approaches to their powertrains, leveraging the best of both internal combustion and battery technology, a similar approach is likely warranted for the most successful of the aerial mobility aircraft: provisioned for future growth with capabilities that can eventually be fully autonomous, but with the option for remote or in-aircraft piloting to occur to assuage passenger concerns and to meet current regulatory requirements.
Why it’s important: As AI continues to evolve, the future of aerial mobility may evolve to leverage this technology as well. AI-driven predictive flight path monitoring may enhance safety but also paves the way for increased automation and autonomy in air travel, if implemented gradually and successful. The runway to AI integration into aviation is a long one, but slow incremental steps will yield benefit.
Skyports and Equinor Partner to Improve Offshore Logistics with Electric Drone Deliveries
In a new collaboration, Skyports Drone Services, a drone logistics, survey, and monitoring operations company, has teamed up with Norwegian energy company Equinor to lead a new project in the aerial mobility sector. This partnership aims to improve cargo logistics for offshore oil installations in the North Sea, setting a new standard for efficiency, safety, and sustainability. The project, which...

Skyports and Equinor Partner to Improve Offshore Logistics with Electric Drone Deliveries

In a new collaboration, Skyports Drone Services, a drone logistics, survey, and monitoring operations company, has teamed up with Norwegian energy company Equinor to lead a new project in the aerial mobility sector. This partnership aims to improve cargo logistics for offshore oil installations in the North Sea, setting a new standard for efficiency, safety, and sustainability.
The project, which commenced in early September, is the first-ever daily, on-demand drone delivery service initiated from shore to offshore oil rigs and uses highly automated cargo drones developed by Swoop Aero. The drones can cover distances of up to 114 kilometers and are currently shuttling cargo between Equinor’s Mongstad processing center on the west coast of Norway and three installations in the Gullfaks oil field.

Skyports Drone Services has conducted numerous flights with hundreds more planned throughout the two-month trial. These flights are transporting a diverse range of cargo; from spare parts and equipment to care packages, showcasing the versatility of drone logistics.
One of the most notable advantages of uncrewed drone services is their cost-efficiency, speed of deployment, and enhanced safety compared to traditional transportation methods. These drones can operate in challenging visibility conditions, including fog, pending regulatory approvals – a development that holds immense promise for the aerial mobility industry.
Moreover, the environmental benefits of electric drones is an important consideration for this operation as well. With zero operating emissions, they are a profound leap toward sustainability in the offshore sector.
The trial also highlights the potential for scaling drone services with minimal human intervention. Remote piloting by a small Skyports Drone Services team from Equinor’s ROC in Bergen ensures seamless operations. Equinor staff on the installations have received training to handle cargo, batteries, and drone interactions, underlining the adaptability of the system.
Initial results of the trial have been positive, paving the way for potential expansion to additional installations, thus shaping the future of aerial mobility in the offshore energy sector.
Alex Brown, Director of Skyports Drone Services, emphasized the project’s significance: “This project with Equinor proves that drone delivery can offer a safer, cost-effective, more sustainable alternative to conventional transport methods in offshore environments. We are currently exploring how we can expand this groundbreaking work into adjacent sectors such as offshore wind and ship resupply.”
The project’s success has been made possible through collaboration with Avinor and the Civil Aviation Authority of Norway, ensuring the necessary flight permissions are secured.
Why it’s important: The partnership between Skyports Drone Services and Equinor signifies a turning point in the aerial mobility industry. The collaboration showcases how electric drones can revolutionize cargo logistics, bringing new levels of efficiency, safety, and sustainability to offshore operations. As the trial continues to flourish, it opens doors for further innovation and exploration of aerial mobility solutions in adjacent sectors, ultimately helping to shape the future of logistics in challenging environments.
SkyDrive and Lessor Solyu Sign MOU for 50 eVTOL Aircraft
Japanese-based eVTOL maker, SkyDrive, has announced an MOU with Solyu, an aircraft leasing company in Korea, for 50 eVTOL aircraft. Solyu is a lessor based in Korea run by team with decades of experience in the aircraft leasing and finance industry with a focus on providing customers with zero emissions vehicles such as eVTOL, eCTOL, and eSTOL. SkyDrive is currently...

SkyDrive and Lessor Solyu Sign MOU for 50 eVTOL Aircraft

Japanese-based eVTOL maker, SkyDrive, has announced an MOU with Solyu, an aircraft leasing company in Korea, for 50 eVTOL aircraft. Solyu is a lessor based in Korea run by team with decades of experience in the aircraft leasing and finance industry with a focus on providing customers with zero emissions vehicles such as eVTOL, eCTOL, and eSTOL.

SkyDrive is currently developing a three-seat electric, vertical takeoff and landing aircraft called “SKYDRIVE.” Its eVTOL is in the process of acquiring its Japan Civil Aviation Bureau (JCAB) certification.
In Korea, the metropolitan area faces a problem of severe traffic congestion, and the Korean government formed the Korea Urban Air Mobility (K-UAM) Roadmap, expecting that the time and social costs can be reduced by 70%. The government also promotes the plan for public-private joint demonstration project, the K-UAM Grand Challenge. Solyu believes it is important to promote the use of electric, zero-emission vehicles in Korea to accelerate the K-UAM goal and agreed on the pre-order of SkyDrive eVTOL.
SkyDrive and Solyu continue to evaluate commercial eVTOL considerations such as vertiports, routes, infrastructure requirements, and ecosystems with the Korean government and other interested stakeholders to launch new mobility solutions in Korea.
Solyu Company President, Andrew Claerbout, commented on the memorandum of understanding, “The eVTOL market will bring opportunities for reducing global emissions and increasing traveler convenience. We’re honored to work with SkyDrive and the award-winning SD-05 to develop this global market.”
Why it’s important: Korea is one of the most dense urban markets in the world and is a prime market for the eVTOL industry. With a fleet of 50 SkyDrive eVTOL aircraft, Solyu has an opportunity to leverage electrified aviation and offer low-cost, emission free travel in the area.
BETA Technologies to install first electric aircraft charger at Eglin Air Force Base
The United States Department of Defense (DoD) has entered into an expansive partnership with BETA Technologies to install the first ever electric aircraft charging station at Eglin Air Force Base in Florida. Initiated in 2020, this partnership has been instrumental in expediting the adoption of electric aviation within both the United States military and the broader commercial aviation sector. An...

BETA Technologies to install first electric aircraft charger at Eglin Air Force Base

The United States Department of Defense (DoD) has entered into an expansive partnership with BETA Technologies to install the first ever electric aircraft charging station at Eglin Air Force Base in Florida.

Initiated in 2020, this partnership has been instrumental in expediting the adoption of electric aviation within both the United States military and the broader commercial aviation sector. An illustrious milestone in this journey saw BETA Technologies being recognized as the foremost electric aircraft developer to secure an airworthiness certificate for manned flight from the military. Furthermore, they have conducted the sole piloted qualitative evaluation flights, featuring esteemed test pilots from the United States Air Force and Army.
This partnership, dedicated to evaluating the feasible mission capabilities and broad applicability of BETA’s electric aircraft and chargers, is set to persist with the forthcoming introduction of BETA’s ALIA aircraft to Eglin Air Force Base this autumn. Notably, BETA’s versatile and intermodal electric charger has demonstrated the remarkable capacity to recharge an electric aircraft in under an hour.
BETA originally was in pursuit of developing its eVTOL aircraft version, but recently decided to also certify a CTOL version, Alia, which will be delivered to Elgin Air Force Base. Meanwhile other eVTOL companies including Joby and Archer have also committed to delivering their respective air taxis to other Air Force bases near the end of 2023 or early 2024.
Related:
- UPS and BETA Technologies to test UAE electric flight deliveries
- Beta Technologies to Enhance Focus on Electric Aircraft Certification
Bearing conformity to the established standards jointly agreed upon by a substantial segment of the Advanced Air Mobility (AAM) industry, as delineated in the recent ‘Interoperability of Electric Charging Infrastructure’ whitepaper by the General Aviation Manufacturers Association (GAMA), BETA’s chargers exhibit the versatility to support an array of electric aircraft while also accommodating ground electric vehicles.

“The DoD, and specifically AFWERX’s Agility Prime team, have been invaluable partners to us for the past several years, offering deep insights that have helped us continue to progress our technology,” said Beta founder and CEO Kyle Clark. “The installation of this charger is an enabling step as the DOD looks to transition to a more sustainable fleet. We look forward to using it to charge our aircraft later this year during planned on-base experimentation with the Air Force at Duke Airfield.”
“Charging station installation is a critical step to unleash test and experimentation with the DoD to leverage emerging electric aviation technology as a capability for the warfighter,” said Maj Anthony Zartman, Agility Prime’s program manager and team lead. “Two charging test sites will be set up by the end of the calendar year, marking the first multimodal charging capabilities for the Air Force. Further, the charging stations will provide an opportunity to explore the utility of electric vehicle fleet modernization as well as base and flight line support equipment to improve energy use and reduce emissions.”
Why it’s important: This pioneering Level 3 DC fast-charging facility is poised to provide essential support for on-site electric vehicle experimentation, signifying the latest advancement in the enduring collaboration between BETA Technologies and the DoD through its esteemed AFWERX Agility Prime Program.
Bristow Group and Volocopter Join Forces to Advance Aerial Mobility with Planned UAM Services
Bristow Group Inc, a global leader in vertical flight solutions, and Volocopter have embarked on a collaboration that sets the stage for passenger and cargo services utilizing electric vertical takeoff and landing (eVTOL) aircraft in the U.S. and U.K. The partnership was announced last week and includes Bristow’s firm order for two VoloCity aircraft, with an option for an additional...

Bristow Group and Volocopter Join Forces to Advance Aerial Mobility with Planned UAM Services

Bristow Group Inc, a global leader in vertical flight solutions, and Volocopter have embarked on a collaboration that sets the stage for passenger and cargo services utilizing electric vertical takeoff and landing (eVTOL) aircraft in the U.S. and U.K.

The partnership was announced last week and includes Bristow’s firm order for two VoloCity aircraft, with an option for an additional 78, once certified. Together, Volocopter and Bristow are poised to build a robust UAM ecosystem, encompassing regulatory discussions, infrastructure development, and local partnerships.
The scope of their joint development agreement is broad: covering commercial, operational, and eVTOL aircraft maintenance services. This includes adapting Volocopter’s proprietary digital platform, VoloIQ, to ensure the efficiency of Bristow’s future operations.
The eVTOL sector is rapidly evolving, driven by its emission-free flights and ultra-low noise signatures. With the VoloCity joining Bristow’s fleet, there are undoubtedly an array of new urban routes and service possibilities under study.
Volocopter aims to secure final certification from the European Union Aviation Safety Agency (EASA) in 2024, with FAA certification in the U.S. following shortly thereafter, potentially opening doors for commercial UAM services.
Dave Stepanek, Bristow’s Executive Vice President and Chief Transformation Officer, expressed his excitement, saying, “Launching this collaborative effort with Volocopter marks a major milestone in Bristow’s effort to usher in a new era of vertical transportation solutions.” He further highlighted Volocopter’s pragmatic approach to certification and innovative aircraft design.
Christian Bauer, CFO & CCO of Volocopter, emphasized the significance of this partnership, given Bristow’s vast experience in bringing new aircraft into service. Bauer stated, “Our partnership with Bristow and the firm VoloCity orders received propels us forward as we unlock new markets.”
Why it’s important: With more than 500 pre-orders, including nearly 30 firm orders from partners, Volocopter is forging a path toward a more accessible and sustainable aviation future. Together with Bristow, Volocopter is moving forward to an ultimate goal of wide access to the benefits of aviation, where flying becomes not just a dream but a reality for people across the globe. In this bold venture, innovation and experience unite, promising a future where UAM services revolutionize the way we travel, connect, and experience the world.
Iris Automation and uAvionix Partner to Elevate Aerial Mobility Safety
In a significant stride towards enhancing the safety and efficiency of unmanned aerial systems (UAS) operations, Iris Automation and uAvionix have unveiled a strategic partnership aimed at revolutionizing Command and Control (C2) and Detect and Avoid (DAA) services for the aerial mobility industry. The collaboration will feature Iris Automation’s ground-based collision avoidance data, the Casia G, integrated into uAvionix’s SkyLine...

Iris Automation and uAvionix Partner to Elevate Aerial Mobility Safety

In a significant stride towards enhancing the safety and efficiency of unmanned aerial systems (UAS) operations, Iris Automation and uAvionix have unveiled a strategic partnership aimed at revolutionizing Command and Control (C2) and Detect and Avoid (DAA) services for the aerial mobility industry. The collaboration will feature Iris Automation’s ground-based collision avoidance data, the Casia G, integrated into uAvionix’s SkyLine services, delivering unparalleled airspace awareness and connectivity for small UAS.

One of the critical challenges in the skies today lies in distinguishing between cooperative aircraft, which share their positional data through technologies like ADS-B, and non-cooperative aircraft that do not. uAvionix has emerged as a leader in cooperative aircraft detection, leveraging ADS-B IN solutions for UAS. Now, with the added capabilities of Iris Automation’s Casia G, operators will have a holistic solution for Beyond Visual Line of Sight (BVLOS) operations.
The Casia G system, powered by advanced computer vision and artificial intelligence, swiftly detects and classifies intruder aircraft, offering vital response time to ensure safety. This ground-based variant provides expansive coverage, ensuring scalable coverage through strategically deployed nodes. By fusing the data produced by Casia G with ADS-B data from uAvionix, operators will enjoy comprehensive situational awareness, going beyond what single-sensor-based systems can provide.
Christian Ramsey, Managing Director of uAvionix uncrewed Systems, characterized the partnership, stating “Integration of the Iris’ Casia G data is another step toward enabling scalable and achievable Beyond Visual Line of Sight (BVLOS) flights for UAS operators.” With this combined solution, operators can confidently navigate the complexities of low-altitude airspace, mitigating the risk of incidents and near-mid-air collisions.
Jon Damush, CEO of Iris Automation, expressed excitement about the collaboration, noting that “operators will now have a turn-key solution for their BVLOS operations.” The partnership is actively progressing towards integrating Casia G data into the SkyLine service through field tests and operational scenarios. The resulting advanced airspace awareness and command and control capabilities are expected to become available to UAS operators later this year.
Why it’s important: As the aerial mobility industry continues to evolve, safety and efficiency remain paramount. The alliance between Iris Automation and uAvionix is poised to contribute significantly to the sector’s growth by providing operators with the tools they need to navigate the skies with confidence and reliability. It’s a pivotal step towards a future where aerial mobility is not just a dream but a safe and accessible reality.
Share this: