Results for: LIFT
Rensselaer Polytechnic Institute Opens Center for Mobility with Vertical Lift
The goal of Rensselaer’s latest research center is to pursue cutting-edge research in vertical takeoff and landing (VTOL) aircraft technologies. Earlier this month, the Rensselaer Polytechnic Institute (RPI) held a ribbon cutting ceremony attended by Uber Elevate Director of Engineering Mark Moore, as well as representatives from Terrafugia, Boeing, Aurora Flight Sciences, and Bell. While the opening of RPI MOVE...

Rensselaer Polytechnic Institute Opens Center for Mobility with Vertical Lift

The goal of Rensselaer’s latest research center is to pursue cutting-edge research in vertical takeoff and landing (VTOL) aircraft technologies.
Earlier this month, the Rensselaer Polytechnic Institute (RPI) held a ribbon cutting ceremony attended by Uber Elevate Director of Engineering Mark Moore, as well as representatives from Terrafugia, Boeing, Aurora Flight Sciences, and Bell.
While the opening of RPI MOVE is partly driven by interest in vertical lift technologies from the Department of Defense, the director of the new center Farhan Gandhi higlights the “tremendous buzz” around eVTOLs. Ghandi believes that the use of distributed electric propulsion, as well as autonomous operation could “completely change the mobility paradigm.”

“Enabled by the use of distributed electric propulsion, with piloted as well as autonomous operation, eVTOL aircraft have the potential to completely change the mobility paradigm.”–RPI MOVE Director Professor Farhan Gandhi
MOVE has already acquired 21 Ph.D. students and is working on projects having to do with VTOL aeromechanics, multi-copters, advanced VTOL configurations, control and autonomy, flying qualities, diagnostics and structural health monitoring, computational fluid dynamics, experimental aerodynamics, nano-materials, and design optimization.
In short, RPI MOVE is designed to be an innovation hub producing students with unique technological knowledge for VTOLS and a wide range of innovative VTOL projects.
RPI has already started releasing educational material, including the “Dawn of eVTOL” speech by Mark Moore, the “The Electric VTOL Revolution” kickoff presentation from the Vertical Flight Society , and the “Electric VTOL: Current Status & Technical Challenges” panel featuring representatives from Boeing, Aurora Flight Sciences, Terrafugia, and Bell.
Why it’s important: The creation of the RPI MOVE center speaks to the future growth of the eVTOL industry. As more and more eVTOL developers begin to emerge, there will be more and more demand for graduates with expertise in Vertical Lift. Rensselaer has recognized this by forming MOVE.
Preparing for Liftoff-Andrew Beebe and Joe Blair
Preparing for Liftoff Electric flight will transform our cities for the better, and it will happen sooner than you might think. by Andrew Beebe andJoe Blair There’s a revolution in the air. Literally, up in the sky. Winged devices and the necessary ecosystem around them are undergoing the biggest transformation since humanned flight began over 100 years ago. Technologists have promised “flying cars” for...

Preparing for Liftoff-Andrew Beebe and Joe Blair

Preparing for Liftoff
Electric flight will transform our cities for the better, and it will happen sooner than you might think.
by Andrew Beebe andJoe Blair
There’s a revolution in the air. Literally, up in the sky. Winged devices and the necessary ecosystem around them are undergoing the biggest transformation since humanned flight began over 100 years ago.
Technologists have promised “flying cars” for decades but the aircraft industry has failed to deliver. This time is different. Instead of cars with fold out wings, there is a new species of aircraft evolving — one that is small, agile, fast, all-electric, and emission-free. Most of them are eVTOL (electric vertical take-off and landing) aircraft, meaning they take off and land vertically like a helicopter and then glide horizontally on a fixed wing like an airplane.
These technical advancements are enabling a new vision for on-demand electric air taxis, allowing an entirely novel type of urban transportation modality that’s as affordable as renting a car or buying a train ticket.
In the near future, this industry could vastly change how and where we all live, work, and play. There are indeed threats and challenges to this vision, but the wheels are already in motion and the future is much closer than most people think.
I. How We Got Here
Military Development
As with many technologies, massive military investment played a role in advancing cutting edge aerospace technologies. Unmanned Aerial Vehicles (UAVs) used in the military and pioneered by companies like AeroVironment were critical in perfecting drone tech. While the initial use cases were militaristic in nature, the downstream effects catalyzed a commercial drone industry with world positive use cases — from helping cities more safely inspect bridges to delivering blood in Rwanda.
Energy Storage
Over the last decade, the explosive growth of mobile computing drove a radical reduction in weight while increasing the density of lithium ion batteries. In the beginning of electric flight, power wasn’t possible with lead acid ballasts sitting in a fuselage. But the advent of energy-dense, lightweight batteries brings with it hyper-efficient, “drive-by-wire” electric rotors in flight. Without the physical constraints of heavy, fossil-fuel driven drivetrains, rotors can be located strategically on the aircraft to maximize propulsion, minimize drag, and optimize the balance of the aircraft.
Sensors
After affordable, lightweight energy storage, the second leg of the stool was sensors. Starting with accurate and enhanced GPS, the explosion of low-cost accelerometers, machine vision, and detection devices collectively allowed drones to manage themselves in ways never before possible.
Software
Coupled with the right sensors, low-cost rotors, and lightweight composite structures, drones could finally manage themselves, or be remotely piloted. Anyone who has watched an NFL nighttime halftime show has seen extraordinary drone coordination feats which are largely driven by this type of software.
This trio of storage, sensors, and software came together to build today’s six billion-dollar commercial drone industry. Only ten years ago, it barely existed. Once drones are allowed to fly beyond visual line-of-sight, the market is expected to grow at an even faster pace.
II. Today’s Context
Urbanization and its Discontents…
The democratization of flight can’t come soon enough. Cities across the country, and even more so around the world, are choking on their own growth. Dense urban environments promised us efficiency and convenience, but in many cases have delivered congestion, inefficiency, pollution, and skyrocketing costs.
In order to address affordability, pollution, and congestion, the transportation paradigm will have to change. As living spaces and communities become more dynamic, commuting patterns will change, and cities will need greater flexibility. Public transportation infrastructure (like subways, commuter trains, and ever widening highways) can be inflexible and expensive. While mass transit will continue to be necessary, taking to the skies will help build a more adaptive and dynamic urban environment.
Clean, cost-effective air taxis will help support a new urban/ex-urban paradigm where commuting from many miles away is no longer a punitive prospect. People may no longer need to plan their housing needs around a specific rail terminal, and may no longer need to plan their weekend escapes in the face of walls of traffic.
The Innovators
There already major forces at work here, even with much of the activity flying under the radar.
- Lilium made a splash in 2016 with their Series A led by Nikolas Zenstrom of Atomico and the launch of their public flight video. Obvious Ventures subsequently invested in their $90M Series B in 2017, along with Tencent and others.
- Joby had maintained a low profile until 2018 when they announced a $100M financing led by Intel, including the likes of AME Cloud, JetBlue Technology Ventures, Capricorn Investment Group, and others.
- KittyHawk was completely hidden from public view until recently, and privately funded exclusively by Larry Page. They are working on two projects, a single-person recreational Flyer and a multi-passenger vehicle called Cora. They announced a partnership with the New Zealand government in 2018.
- Airbus’ Vahana project is a single-passenger vehicle called the Alpha One, developed by one of the leading teams from a large corporate player, and had their maiden flight in 2018. The amount of money Airbus has spent on this project is not public.
- Uber has made clear its intentions to play a significant role in the future of aerial ride sharing, hosting an annual conference called Uber Elevate, proposing guidelines for common standards, and partnering with traditional aircraft manufacturers who are also looking to get into the space. Uber aims to own the entire end-to-end experience for the consumer, whether traveling by ground, air, or sea.
Since the big funding announcements there have been several dozen other startups entering the urban mobility space, all with differing variations of vehicle design, flight mission, and business strategy.
There are other companies adding hybrid electric tech to traditional long distance commercial airliners, like Zunum (backed by Boeing and JetBlue) and Wright Electric (backed by EasyJet and others). Finally there is Boom, working on a supersonic jet (not electric, but interesting nonetheless).
Not since the time of Orville and Wilbur Wright has there been such a wealth of innovation in the aviation industry.
III. What’s Next?
Safety First
Safety is paramount for all stakeholders in the air taxi industry, including regulators, service providers, aircraft manufacturers, suppliers, and customers. Everyone is on the same team when it comes to safety. The world is watching, and we all need to make safety the number one priority if we want this industry to develop. Likewise, one unfortunate crash could ground all aircraft and snuff out the industry before it even gets started.
To that end, the rollout should and will happen gradually.
1. Crawl
During the certification process, aircraft will go through an extensive battery of tests to ensure the pinnacle of safety and reliability. Aircraft will be assessed in every possible scenario before any customer ever climbs aboard one. This is what regulators are best at, and already have the necessary processes and talent in place to make it happen.
2. Walk
Once certified, rides will be offered to the public in a limited way. Regulators will be evaluating safety of course, but will also ensure that ride providers are prompt, organized, and offer high quality service to their customers.
3. Run
Once the ride service has proven its ability to operate at the highest level, other routes will be opened up. A higher volume of flights from existing vertiports will be allowed. New vertiports (specifically for eVTOL) will open and new routes will be established.
4. Fly
The regulators approve autonomous air travel. Volumes increase, prices plunge, and urban flight becomes fully democratized with larger vehicles and longer flight distances. People start to rethink where they live, work, and play. For example, people who work in San Francisco may opt to live in the Sierra foothills. Whereas the commute previously took three hours, now it’s a more manageable 30 minutes. We expect this to change real estate prices, reduce traffic in cities, and make the world more accessible to more people.
Infrastructure
Step 1 — Leverage existing architecture
Existing helipads and airports are natural choices for initial air taxi routes, as they are already equipped with adequate physical space, air traffic control processes, and supporting personnel. Most people don’t realize that the helicopter transportation market is already $18 billion globally. For example, helicopter ride-sharing company Blade is operating flights between Manhattan, the Hamptons, and JFK Airport.
Step 2 — Build out new infrastructure (vertiports)
Once the aircraft is proven on existing infrastructure, the market will demand more routes, thus requiring the buildout of new infrastructure. The key requirements are access to charging, air clearances, and proximity to ground transportation. These vertiports will not require much investment, just the charging capability as previously discussed. In the early years, new vertiports will likely be built on city outskirts, thus allowing city-to-city hops while minimizing the need to fly over other infrastructure. Fortunately, for historic reasons, most cities are built near bodies of water, which provide ideal routes for air taxis. Real estate developers will soon realize how lucrative these infrastructure investments can be, and the private markets will play a meaningful role in opening up new routes.
Step 3 — Rooftop expansion
In the long term, vertiports will be built on top of existing buildings enabling hops from building-to-building within a city. This will happen but will likely be the last infrastructure use case. Multi-billion dollar companies will flourish long before this becomes a reality.
Air Traffic Management
Air traffic control systems work well for traditional air travel, but are ill-equipped to handle the air taxi paradigm. Today’s systems still rely on verbal communication, where air traffic controllers must connect directly with pilots to ensure deconfliction. In the early days, air taxis will rely on these systems as well, but as the volume of flights climbs, traditional air traffic control systems may soon become overwhelmed.
The drone industry has been working on a solution. Drones have a more immediate challenge as there is no pilot onboard to communicate with air traffic control. Thus, companies like Airmap have been working on UTM (Unmanned aircraft system Traffic Management). UTM software is rapidly becoming a critical requirement for any consumer or commercial drone, because it helps drone operators automatically request authorization for flights, checks air space restrictions or warnings, and ensures deconfliction with other aircraft.
As drones become more ubiquitous, air taxis may be able to piggyback on UTM thus allowing for an air traffic management system that automatically coordinates the operation of all types of aircraft in a safe and seamless manner.
A Note On Autonomy
In the short-to-medium term, air taxis will be piloted. This approach allows for standardized aircraft certification processes and air traffic control systems — and therefore faster commercial deployment.
However, in the long-term, the market will likely transition toward autonomous air taxis. As futuristic as it sounds, it is not a wildly challenging problem — and is a simpler matter to address compared to self-driving cars. First, there are fewer obstacles in the sky. Second, there is a whole other physical dimension to keep vehicles from hitting each other. And third, aircraft have been effectively “automated” for many years. Most commercial airliners have robust mid-flight “autopilot” functionality, requiring pilots only for outlier situations.
Of course, this new capability will require rigorous testing and a new certification protocol. However, we expect that autonomous air taxis will become commercially available sooner than expected.
IV. Recommendations
Shared Skies
Ford and GM don’t own highways, just as Airbus and Boeing don’t own airspace. Similarly, air taxi manufacturers and service providers must share the skies among each other and other types of aircraft. Routes should be open to any air taxi meeting regulator requirements. Dan Elwell, Acting Administrator at the FAA, reiterated the FAA’s goal of integrated airspace at the 2018 Uber Elevate conference.
Open Infrastructure
In the conventional aircraft world, both public and private airports exist. Private airports can restrict landings except in the event of an emergency. The early years may require privately funded vertiports, but publicly accessible vertiports should be opened up quickly. Whether funded privately by savvy real estate investors or publicly by transportation authorities, in the future we will see a tremendous number of vertiports accessible by a wide range of certified air taxis.
Common Protocols
Sharing and collaborating on protocols will ensure healthy competition and the fast growth of the industry. For example, if air taxi companies converged on a set of electric charging requirements then each vertiport would be robustly equipped to handle any existing and future aircraft. Similarly, convergence on air traffic management systems will ensure consistent awareness of where all other vehicles are and optimize traffic flow, thus providing better service for consumers. Regulators are already leading here and must continue assembling coalitions of the willing.
Community Collaboration
The air taxi industry will only be successful if the communities in which they operate are engaged early and if their needs are met. This means rides will be affordable for the vast majority of the community, not just the elite. This means vehicles will be quiet enough to not disrupt your conversation with a neighbor. This means flights will be spaced out and at the appropriate altitude so that your view isn’t marred by a ubiquitous swarm of aircraft. To this end, companies should co-design the service with communities and even facilitate public-private initiatives to kickstart the conversation.
By following these recommendations, the air taxi industry has a legitimate chance to thrive and realize its true world positive potential.
Cyclorotor Conducts First Flight of Unique Unmanned Aircraft Configuration
Cyclorotor unveiled footage of the first flight of their Bumblebee2.0 concept with an Enhanced Propulsion system last week. The flight occurred at the end of August, 2023. This aircraft showcases a unique configuration, featuring four CR42 CycloRotors and an advanced flight control system. The launch of the outdoor flight campaign marks progress toward development of CYCLOROTOR’s unique aviation propulsion system....

Cyclorotor Conducts First Flight of Unique Unmanned Aircraft Configuration

Cyclorotor unveiled footage of the first flight of their Bumblebee2.0 concept with an Enhanced Propulsion system last week. The flight occurred at the end of August, 2023. This aircraft showcases a unique configuration, featuring four CR42 CycloRotors and an advanced flight control system. The launch of the outdoor flight campaign marks progress toward development of CYCLOROTOR’s unique aviation propulsion system.
The flight demonstration took place at a general aviation airport in Austria. CYCLOROTOR shares that their outdoor flight operations adhere to all applicable regulations set by the European Union Aviation Safety Agency (EASA), operating under the UAS operational authorization for the “specific” category.

Over the coming months, Cyclorotor plans to demonstrate the capabilities of its 360° thrust vectoring CycloRotors. These innovative propulsion units are based off of a design that’s over 100 years old and can challenge traditional aerial mobility industry aircraft configurations. However, not all are in agreement of the level of enhanced maneuverability, stability, and efficiency in flight offered by this unique configuration. CYCLOROTOR aims to systematically expand the flight envelope, further exploring and collecting data on the performance of their unique aircraft design.
While the debut of Bumblebee2.0 represents a unique application of a novel propulsion and lifting concept that is over a century old, it is important to note that this novel configuration may only partially permeate into limited applications in the drone industry. As with any unique configuration, widespread adoption often requires time and industry-wide acceptance in addition to successful, demonstrated performance.
Why it’s important: CYCLOROTOR has invited aviation enthusiasts, industry stakeholders, and the public to stay tuned for more updates as they continue to push the boundaries of what is possible in the world of aerial mobility. While their novel configuration is still not proven for widespread application, the team is making strides toward advancement of a unique type of aircraft and collecting data that can be used to improve future variants.
VoltAero Achieves Milestone Flight with Sustainable Aviation Fuel
VoltAero has achieved a significant milestone by conducting a flight using its proprietary electric-hybrid powertrain, fueled entirely by sustainable bioethanol from TotalEnergies. The landmark event took place at VoltAero’s development facility in Royan, France, and represents a giant stride towards greener and more sustainable aviation. The successful flight test utilized VoltAero’s Cassio S testbed airplane, serving as a crucial validation...

VoltAero Achieves Milestone Flight with Sustainable Aviation Fuel


VoltAero has achieved a significant milestone by conducting a flight using its proprietary electric-hybrid powertrain, fueled entirely by sustainable bioethanol from TotalEnergies. The landmark event took place at VoltAero’s development facility in Royan, France, and represents a giant stride towards greener and more sustainable aviation.
The successful flight test utilized VoltAero’s Cassio S testbed airplane, serving as a crucial validation step for both the electric-hybrid powertrain and the use of sustainable fuels. This accomplishment plays a pivotal role in de-risking the airworthiness certification process for forthcoming production models within the Cassio aircraft family.
Jean Botti, CEO and Chief Technology Officer of VoltAero noted that “based on initial results, we calculated a truly impressive CO2 reduction of approximately 80 percent while operating the Cassio powertrain in its electric-hybrid mode and with the internal combustion engine fueled by TotalEnergies’ Excellium Racing 100.” This development highlights the potential of Cassio aircraft to contribute significantly to the aviation industry’s decarbonization goals by replacing conventional Avgas 100 high-octane fuel.
The collaboration between VoltAero and TotalEnergies reflects a step toward the broader adoption of sustainable aviation fuels (SAF) in general aviation. Excellium Racing 100, derived from winemaking waste, has demonstrated its environmental benefits in automobile competitions and features a 65% reduction in CO2 emissions compared to its fossil fuel counterparts over its life cycle.
Joël Navaron, President of TotalEnergies Aviation, emphasized the company’s commitment to supporting aviation’s decarbonization objectives. TotalEnergies has initiated various actions, including the installation of electric charging stations for general aviation aircraft and a pilot program aimed at offering SP98-type fuel for compatible aircraft.
The Cassio family of aircraft, integrated with VoltAero’s patented electric-hybrid propulsion system, promises to revolutionize regional commercial operations, air taxi services, private ownership, and utility applications like cargo transport and medical evacuation (Medevac). With its unique hybrid propulsion system, Cassio delivers higher performance and significantly reduced operational costs.
Why it’s important: VoltAero’s latest achievement is desired by those in aerospace to become a more common occurrence in the next chapter of aviation, taking aerial mobility one step closer to more environmentally friendly outcomes. While the current supply of sustainable aviation fuel does not yet support full deployment of flights using SAF, compatibility with sustainable aviation fuels is crucial for future regional mobility aircraft designs.
Joby to Build eVTOL Manufacturing Facility in Dayton, Ohio
Joby has announced it plans to locate its first scaled aircraft production facility in Dayton, Ohio, the birthplace of aviation. Joby plans to build a facility capable of delivering up to 500 aircraft per year at the Dayton International Airport, supporting up to 2,000 jobs. The 140-acre site it has selected has the potential to support significant further growth over...

Joby to Build eVTOL Manufacturing Facility in Dayton, Ohio

Joby has announced it plans to locate its first scaled aircraft production facility in Dayton, Ohio, the birthplace of aviation.

Joby plans to build a facility capable of delivering up to 500 aircraft per year at the Dayton International Airport, supporting up to 2,000 jobs. The 140-acre site it has selected has the potential to support significant further growth over time, providing enough land to build up to two million square feet of manufacturing space. Construction of the scaled Ohio facility is expected to start in 2024 and it is expected to come online in 2025. Joby plans to use existing nearby buildings to begin near-term operations.
The State of Ohio, JobsOhio and local political subdivisions have offered incentives and benefits of up to $325 million to support the development of the facility, while Joby plans to invest up to $500 million as it scales operations at the site. Joby is also announcing today that it has been invited by the U.S. Department of Energy to submit a Part II Application for financing under the Title XVII Loan Guarantee Program, which provides access to low-interest loans for clean energy projects and would support the scaling of the facility.
Joby’s long-term investor, Toyota, who worked with Joby on the design and successful launch of the company’s Pilot Production Line in Marina, California, plans to continue to advise Joby as it prepares for scaled production of its commercial passenger air taxi in Ohio.
“We’re building the future of aviation right where it all started, in Dayton, Ohio,” said JoeBen Bevirt, Founder and CEO of Joby. “The Wright Brothers harnessed revolutionary technology of their time to open up the skies, and we intend to do the same — this time, bringing quiet and emissions-free flight that we hope will have an equally profound impact on our world.
“The U.S. continues to lead the way on introducing this technology, with unprecedented levels of support across all areas and levels of government. We’re incredibly grateful to Governor Mike DeWine, Lt. Governor Jon Husted, Senator Sherrod Brown, Senator JD Vance, Representative Mike Turner, and the team at JobsOhio for their support, as well as the representatives of the many other states we worked with during this process.
“Our partnership with Ohio is a great example of how successful public-private partnership amongst industry, local, state and federal government can bring important new technology to life.”
Joby plans to start hiring in the coming months, with early roles expected to focus on the build out of the scaled facility and the machining of parts that will initially be incorporated into Joby’s California low-volume production line.
Joby’s headquarters, research and development, and pilot production facility will remain in California.
Why it matters: Economic incentives from state and federal governments and Joby’s deep partnership with Toyota and the automotive industry make the rust belt the perfect location for a scaled eVTOL manufacturing facility. With the new jobs generated and ability to secure low-interest loans for the development of the site, Joby stands to quickly produce its eVTOL at rates up to 500/year.
Source: Joby Press Release
FAA authorizes Zipline for initial BVLOS drone operations
The FAA has authorized Zipline International, Inc. to deliver commercial packages around Salt Lake City and Bentonville, Arkansas using drones that fly beyond the operator’s visual line of sight (BVLOS). Part 135 operator Zipline uses its Sparrow drone to drop cargo packages via parachute and this FAA approval will enable the longest range drone delivery flights that the United States...

FAA authorizes Zipline for initial BVLOS drone operations

The FAA has authorized Zipline International, Inc. to deliver commercial packages around Salt Lake City and Bentonville, Arkansas using drones that fly beyond the operator’s visual line of sight (BVLOS).
Part 135 operator Zipline uses its Sparrow drone to drop cargo packages via parachute and this FAA approval will enable the longest range drone delivery flights that the United States has ever seen. Data collected from these operations will inform the FAA’s ongoing policy and rulemaking activities.

“Today we use 4,000 pound gas combustion vehicles driven by humans to do billions of deliveries across the country. It’s expensive, slow and bad for the environment. This decision means that we can start to transition delivery to solutions that are 10x as fast, less expensive, and zero emission,” said Keller Rinaudo Cliffton, CEO and co-founder of Zipline. “It means that Zipline hubs across the country can now go from serving a few thousand homes to serving hundreds of thousands of homes each year and millions of people, which will save time, money and even lives.”
Related: NASA Signs Space Act Agreement with Zipline
Okeoma Moronu, Zipline’s head of Global Aviation Regulatory Affairs, said: “We applaud the FAA for taking a major step to integrate autonomous drone delivery into the airspace. This will enable more commerce, new economic opportunities and greater access for millions of Americans. The FAA has incredibly high safety standards and it’s a testament to the entire Zipline team that our delivery drones are entrusted to fly and deliver at scale, over populated areas, in the most complex airspace in the world.”
Meanwhile, The FAA is focused on developing standard rules to make BVLOS operations routine, scalable and economically viable. The agency chartered the Beyond Visual Line of Sight Aviation Rulemaking Committee on June 9, 2021 to provide safety recommendations to the FAA. The FAA’s long-term goal is to safely integrate drones into the National Airspace System rather than set aside separate airspace exclusively for drones.
Why it’s important:
The FAA’s role in enabling BVLOS operations is pivotal to the future of not only small-scale drone delivery operations, but also passenger urban air mobility. By embracing and regulating this technology, the FAA is paving the way for safer, more efficient, and sustainable urban transportation. The benefits are clear: improved safety, reduced congestion, economic growth, greater accessibility, and a leading position on the global stage.
As we look to the future, it is evident that BVLOS operations are not just a regulatory necessity but a key enabler for the realization of UAM’s potential, promising a brighter and more connected urban landscape for generations to come. While some eVTOL aerial mobility manufacturers and operators are currently pursuing onboard pilot aircraft configurations, it’s inevitable that future variants will converge on mostly autonomous or remotely-piloted operation.
AI’s Role in Predictive Flight Path Monitoring for Aerial Mobility
Innovation is soaring to new heights in aerial mobility, and recent advances in artificial intelligence (AI) are challenging the ways traditional methods of flight path monitoring. While there is the potential to significantly enhance safety and efficiency in our increasingly crowded skies, there are also challenges related to how cutting-edge AI technologies can be safely and responsibly applied to new...

AI’s Role in Predictive Flight Path Monitoring for Aerial Mobility

Innovation is soaring to new heights in aerial mobility, and recent advances in artificial intelligence (AI) are challenging the ways traditional methods of flight path monitoring. While there is the potential to significantly enhance safety and efficiency in our increasingly crowded skies, there are also challenges related to how cutting-edge AI technologies can be safely and responsibly applied to new aircraft.

The Challenge of Aerial Mobility
Aerial mobility continues to make inroads on the path to widespread certification and utilization of aircraft to decongest urban areas and more efficiently transport passengers the last 50nm of their trips. With the rapid growth of drones, air taxis, and autonomous aircraft, cities around the world are embracing the potential for faster, cleaner, and more efficient transportation. However, this comes with its own set of challenges, particularly in managing and coordinating the movement of numerous airborne vehicles in urban environments.
AI-Powered Predictive Flight Path Monitoring
AI-driven predictive flight path monitoring has a potential to be a game-changer in this space, but with serious complications if implementation isn’t nearly flawless. AI algorithms, empowered by deep learning and real-time data analysis, enable aerial mobility systems to anticipate and adapt to changing conditions. A potential rosy future could include:
- Collision Avoidance: AI algorithms can predict potential conflicts between aerial vehicles and suggest alternative routes to avoid collisions. This proactive approach significantly reduces the risk of accidents, making urban air travel safer for everyone.
- Weather Forecasting: AI can process vast amounts of weather data in real-time, allowing aircraft to adjust their routes to avoid turbulence, storms, or adverse conditions. This not only enhances safety but also ensures smoother and more comfortable rides for passengers.
- Traffic Management: AI-powered traffic management systems can dynamically allocate airspace and landing zones, optimizing routes to minimize congestion and delays. This promotes efficient use of airspace, reducing travel times and environmental impact.
- Predictive Maintenance: AI can predict maintenance needs for aerial vehicles by analyzing sensor data. This preemptive approach ensures that aircraft are in optimal condition, reducing the risk of in-flight mechanical failures.
While the above list of advances sounds incredibly convenient, it also reflects what many sight as an idyllic view of AI’s implementation in aerial mobility. There are numerous challenges to face, including sporadic, erratic flight paths from other aircraft, regulatory integration and certification, as well as ethical and privacy concerns, especially for those not wanting the data from their flights to be shared for privacy reasons. Finally, the methods by which these algorithms are trained must be ironclad, and evasive actions cannot also be prescribed in situations where immediate intervention is necessary.
As many OEMs adopt hybridized approaches to their powertrains, leveraging the best of both internal combustion and battery technology, a similar approach is likely warranted for the most successful of the aerial mobility aircraft: provisioned for future growth with capabilities that can eventually be fully autonomous, but with the option for remote or in-aircraft piloting to occur to assuage passenger concerns and to meet current regulatory requirements.
Why it’s important: As AI continues to evolve, the future of aerial mobility may evolve to leverage this technology as well. AI-driven predictive flight path monitoring may enhance safety but also paves the way for increased automation and autonomy in air travel, if implemented gradually and successful. The runway to AI integration into aviation is a long one, but slow incremental steps will yield benefit.
Skyports and Equinor Partner to Improve Offshore Logistics with Electric Drone Deliveries
In a new collaboration, Skyports Drone Services, a drone logistics, survey, and monitoring operations company, has teamed up with Norwegian energy company Equinor to lead a new project in the aerial mobility sector. This partnership aims to improve cargo logistics for offshore oil installations in the North Sea, setting a new standard for efficiency, safety, and sustainability. The project, which...

Skyports and Equinor Partner to Improve Offshore Logistics with Electric Drone Deliveries

In a new collaboration, Skyports Drone Services, a drone logistics, survey, and monitoring operations company, has teamed up with Norwegian energy company Equinor to lead a new project in the aerial mobility sector. This partnership aims to improve cargo logistics for offshore oil installations in the North Sea, setting a new standard for efficiency, safety, and sustainability.
The project, which commenced in early September, is the first-ever daily, on-demand drone delivery service initiated from shore to offshore oil rigs and uses highly automated cargo drones developed by Swoop Aero. The drones can cover distances of up to 114 kilometers and are currently shuttling cargo between Equinor’s Mongstad processing center on the west coast of Norway and three installations in the Gullfaks oil field.

Skyports Drone Services has conducted numerous flights with hundreds more planned throughout the two-month trial. These flights are transporting a diverse range of cargo; from spare parts and equipment to care packages, showcasing the versatility of drone logistics.
One of the most notable advantages of uncrewed drone services is their cost-efficiency, speed of deployment, and enhanced safety compared to traditional transportation methods. These drones can operate in challenging visibility conditions, including fog, pending regulatory approvals – a development that holds immense promise for the aerial mobility industry.
Moreover, the environmental benefits of electric drones is an important consideration for this operation as well. With zero operating emissions, they are a profound leap toward sustainability in the offshore sector.
The trial also highlights the potential for scaling drone services with minimal human intervention. Remote piloting by a small Skyports Drone Services team from Equinor’s ROC in Bergen ensures seamless operations. Equinor staff on the installations have received training to handle cargo, batteries, and drone interactions, underlining the adaptability of the system.
Initial results of the trial have been positive, paving the way for potential expansion to additional installations, thus shaping the future of aerial mobility in the offshore energy sector.
Alex Brown, Director of Skyports Drone Services, emphasized the project’s significance: “This project with Equinor proves that drone delivery can offer a safer, cost-effective, more sustainable alternative to conventional transport methods in offshore environments. We are currently exploring how we can expand this groundbreaking work into adjacent sectors such as offshore wind and ship resupply.”
The project’s success has been made possible through collaboration with Avinor and the Civil Aviation Authority of Norway, ensuring the necessary flight permissions are secured.
Why it’s important: The partnership between Skyports Drone Services and Equinor signifies a turning point in the aerial mobility industry. The collaboration showcases how electric drones can revolutionize cargo logistics, bringing new levels of efficiency, safety, and sustainability to offshore operations. As the trial continues to flourish, it opens doors for further innovation and exploration of aerial mobility solutions in adjacent sectors, ultimately helping to shape the future of logistics in challenging environments.
SkyDrive and Lessor Solyu Sign MOU for 50 eVTOL Aircraft
Japanese-based eVTOL maker, SkyDrive, has announced an MOU with Solyu, an aircraft leasing company in Korea, for 50 eVTOL aircraft. Solyu is a lessor based in Korea run by team with decades of experience in the aircraft leasing and finance industry with a focus on providing customers with zero emissions vehicles such as eVTOL, eCTOL, and eSTOL. SkyDrive is currently...

SkyDrive and Lessor Solyu Sign MOU for 50 eVTOL Aircraft

Japanese-based eVTOL maker, SkyDrive, has announced an MOU with Solyu, an aircraft leasing company in Korea, for 50 eVTOL aircraft. Solyu is a lessor based in Korea run by team with decades of experience in the aircraft leasing and finance industry with a focus on providing customers with zero emissions vehicles such as eVTOL, eCTOL, and eSTOL.

SkyDrive is currently developing a three-seat electric, vertical takeoff and landing aircraft called “SKYDRIVE.” Its eVTOL is in the process of acquiring its Japan Civil Aviation Bureau (JCAB) certification.
In Korea, the metropolitan area faces a problem of severe traffic congestion, and the Korean government formed the Korea Urban Air Mobility (K-UAM) Roadmap, expecting that the time and social costs can be reduced by 70%. The government also promotes the plan for public-private joint demonstration project, the K-UAM Grand Challenge. Solyu believes it is important to promote the use of electric, zero-emission vehicles in Korea to accelerate the K-UAM goal and agreed on the pre-order of SkyDrive eVTOL.
SkyDrive and Solyu continue to evaluate commercial eVTOL considerations such as vertiports, routes, infrastructure requirements, and ecosystems with the Korean government and other interested stakeholders to launch new mobility solutions in Korea.
Solyu Company President, Andrew Claerbout, commented on the memorandum of understanding, “The eVTOL market will bring opportunities for reducing global emissions and increasing traveler convenience. We’re honored to work with SkyDrive and the award-winning SD-05 to develop this global market.”
Why it’s important: Korea is one of the most dense urban markets in the world and is a prime market for the eVTOL industry. With a fleet of 50 SkyDrive eVTOL aircraft, Solyu has an opportunity to leverage electrified aviation and offer low-cost, emission free travel in the area.
BETA Technologies to install first electric aircraft charger at Eglin Air Force Base
The United States Department of Defense (DoD) has entered into an expansive partnership with BETA Technologies to install the first ever electric aircraft charging station at Eglin Air Force Base in Florida. Initiated in 2020, this partnership has been instrumental in expediting the adoption of electric aviation within both the United States military and the broader commercial aviation sector. An...

BETA Technologies to install first electric aircraft charger at Eglin Air Force Base

The United States Department of Defense (DoD) has entered into an expansive partnership with BETA Technologies to install the first ever electric aircraft charging station at Eglin Air Force Base in Florida.

Initiated in 2020, this partnership has been instrumental in expediting the adoption of electric aviation within both the United States military and the broader commercial aviation sector. An illustrious milestone in this journey saw BETA Technologies being recognized as the foremost electric aircraft developer to secure an airworthiness certificate for manned flight from the military. Furthermore, they have conducted the sole piloted qualitative evaluation flights, featuring esteemed test pilots from the United States Air Force and Army.
This partnership, dedicated to evaluating the feasible mission capabilities and broad applicability of BETA’s electric aircraft and chargers, is set to persist with the forthcoming introduction of BETA’s ALIA aircraft to Eglin Air Force Base this autumn. Notably, BETA’s versatile and intermodal electric charger has demonstrated the remarkable capacity to recharge an electric aircraft in under an hour.
BETA originally was in pursuit of developing its eVTOL aircraft version, but recently decided to also certify a CTOL version, Alia, which will be delivered to Elgin Air Force Base. Meanwhile other eVTOL companies including Joby and Archer have also committed to delivering their respective air taxis to other Air Force bases near the end of 2023 or early 2024.
Related:
- UPS and BETA Technologies to test UAE electric flight deliveries
- Beta Technologies to Enhance Focus on Electric Aircraft Certification
Bearing conformity to the established standards jointly agreed upon by a substantial segment of the Advanced Air Mobility (AAM) industry, as delineated in the recent ‘Interoperability of Electric Charging Infrastructure’ whitepaper by the General Aviation Manufacturers Association (GAMA), BETA’s chargers exhibit the versatility to support an array of electric aircraft while also accommodating ground electric vehicles.

“The DoD, and specifically AFWERX’s Agility Prime team, have been invaluable partners to us for the past several years, offering deep insights that have helped us continue to progress our technology,” said Beta founder and CEO Kyle Clark. “The installation of this charger is an enabling step as the DOD looks to transition to a more sustainable fleet. We look forward to using it to charge our aircraft later this year during planned on-base experimentation with the Air Force at Duke Airfield.”
“Charging station installation is a critical step to unleash test and experimentation with the DoD to leverage emerging electric aviation technology as a capability for the warfighter,” said Maj Anthony Zartman, Agility Prime’s program manager and team lead. “Two charging test sites will be set up by the end of the calendar year, marking the first multimodal charging capabilities for the Air Force. Further, the charging stations will provide an opportunity to explore the utility of electric vehicle fleet modernization as well as base and flight line support equipment to improve energy use and reduce emissions.”
Why it’s important: This pioneering Level 3 DC fast-charging facility is poised to provide essential support for on-site electric vehicle experimentation, signifying the latest advancement in the enduring collaboration between BETA Technologies and the DoD through its esteemed AFWERX Agility Prime Program.
Bristow Group and Volocopter Join Forces to Advance Aerial Mobility with Planned UAM Services
Bristow Group Inc, a global leader in vertical flight solutions, and Volocopter have embarked on a collaboration that sets the stage for passenger and cargo services utilizing electric vertical takeoff and landing (eVTOL) aircraft in the U.S. and U.K. The partnership was announced last week and includes Bristow’s firm order for two VoloCity aircraft, with an option for an additional...

Bristow Group and Volocopter Join Forces to Advance Aerial Mobility with Planned UAM Services

Bristow Group Inc, a global leader in vertical flight solutions, and Volocopter have embarked on a collaboration that sets the stage for passenger and cargo services utilizing electric vertical takeoff and landing (eVTOL) aircraft in the U.S. and U.K.

The partnership was announced last week and includes Bristow’s firm order for two VoloCity aircraft, with an option for an additional 78, once certified. Together, Volocopter and Bristow are poised to build a robust UAM ecosystem, encompassing regulatory discussions, infrastructure development, and local partnerships.
The scope of their joint development agreement is broad: covering commercial, operational, and eVTOL aircraft maintenance services. This includes adapting Volocopter’s proprietary digital platform, VoloIQ, to ensure the efficiency of Bristow’s future operations.
The eVTOL sector is rapidly evolving, driven by its emission-free flights and ultra-low noise signatures. With the VoloCity joining Bristow’s fleet, there are undoubtedly an array of new urban routes and service possibilities under study.
Volocopter aims to secure final certification from the European Union Aviation Safety Agency (EASA) in 2024, with FAA certification in the U.S. following shortly thereafter, potentially opening doors for commercial UAM services.
Dave Stepanek, Bristow’s Executive Vice President and Chief Transformation Officer, expressed his excitement, saying, “Launching this collaborative effort with Volocopter marks a major milestone in Bristow’s effort to usher in a new era of vertical transportation solutions.” He further highlighted Volocopter’s pragmatic approach to certification and innovative aircraft design.
Christian Bauer, CFO & CCO of Volocopter, emphasized the significance of this partnership, given Bristow’s vast experience in bringing new aircraft into service. Bauer stated, “Our partnership with Bristow and the firm VoloCity orders received propels us forward as we unlock new markets.”
Why it’s important: With more than 500 pre-orders, including nearly 30 firm orders from partners, Volocopter is forging a path toward a more accessible and sustainable aviation future. Together with Bristow, Volocopter is moving forward to an ultimate goal of wide access to the benefits of aviation, where flying becomes not just a dream but a reality for people across the globe. In this bold venture, innovation and experience unite, promising a future where UAM services revolutionize the way we travel, connect, and experience the world.
Iris Automation and uAvionix Partner to Elevate Aerial Mobility Safety
In a significant stride towards enhancing the safety and efficiency of unmanned aerial systems (UAS) operations, Iris Automation and uAvionix have unveiled a strategic partnership aimed at revolutionizing Command and Control (C2) and Detect and Avoid (DAA) services for the aerial mobility industry. The collaboration will feature Iris Automation’s ground-based collision avoidance data, the Casia G, integrated into uAvionix’s SkyLine...

Iris Automation and uAvionix Partner to Elevate Aerial Mobility Safety

In a significant stride towards enhancing the safety and efficiency of unmanned aerial systems (UAS) operations, Iris Automation and uAvionix have unveiled a strategic partnership aimed at revolutionizing Command and Control (C2) and Detect and Avoid (DAA) services for the aerial mobility industry. The collaboration will feature Iris Automation’s ground-based collision avoidance data, the Casia G, integrated into uAvionix’s SkyLine services, delivering unparalleled airspace awareness and connectivity for small UAS.

One of the critical challenges in the skies today lies in distinguishing between cooperative aircraft, which share their positional data through technologies like ADS-B, and non-cooperative aircraft that do not. uAvionix has emerged as a leader in cooperative aircraft detection, leveraging ADS-B IN solutions for UAS. Now, with the added capabilities of Iris Automation’s Casia G, operators will have a holistic solution for Beyond Visual Line of Sight (BVLOS) operations.
The Casia G system, powered by advanced computer vision and artificial intelligence, swiftly detects and classifies intruder aircraft, offering vital response time to ensure safety. This ground-based variant provides expansive coverage, ensuring scalable coverage through strategically deployed nodes. By fusing the data produced by Casia G with ADS-B data from uAvionix, operators will enjoy comprehensive situational awareness, going beyond what single-sensor-based systems can provide.
Christian Ramsey, Managing Director of uAvionix uncrewed Systems, characterized the partnership, stating “Integration of the Iris’ Casia G data is another step toward enabling scalable and achievable Beyond Visual Line of Sight (BVLOS) flights for UAS operators.” With this combined solution, operators can confidently navigate the complexities of low-altitude airspace, mitigating the risk of incidents and near-mid-air collisions.
Jon Damush, CEO of Iris Automation, expressed excitement about the collaboration, noting that “operators will now have a turn-key solution for their BVLOS operations.” The partnership is actively progressing towards integrating Casia G data into the SkyLine service through field tests and operational scenarios. The resulting advanced airspace awareness and command and control capabilities are expected to become available to UAS operators later this year.
Why it’s important: As the aerial mobility industry continues to evolve, safety and efficiency remain paramount. The alliance between Iris Automation and uAvionix is poised to contribute significantly to the sector’s growth by providing operators with the tools they need to navigate the skies with confidence and reliability. It’s a pivotal step towards a future where aerial mobility is not just a dream but a safe and accessible reality.
H2FLY Completes First Piloted Flight of Liquid Hydrogen-Electric Aircraft
Joby subsidiary, H2FLY has announced successful completion of the world first piloted flight of a liquid hydrogen-powered electric aircraft. H2FLY, acquired by Joby in 2021, continues to lead the industry on the development and testing of hydrogen aviation propulsion systems. The company completed a series of piloted flights with its HY4 demonstrator aircraft, including one that lasted more than three...

H2FLY Completes First Piloted Flight of Liquid Hydrogen-Electric Aircraft

Joby subsidiary, H2FLY has announced successful completion of the world first piloted flight of a liquid hydrogen-powered electric aircraft.
H2FLY, acquired by Joby in 2021, continues to lead the industry on the development and testing of hydrogen aviation propulsion systems. The company completed a series of piloted flights with its HY4 demonstrator aircraft, including one that lasted more than three hours, fitted with a hydrogen-electric fuel cell propulsion system and liquid hydrogen that powered it for the entire flight.

The flights demonstrate the viability of using cryogenically-stored liquid hydrogen instead of gaseous hydrogen, which enables significantly lower tank weights and volume, leading to longer range. The successful installation and demonstration of flight with liquid hydrogen is believed to increase the range of H2FLY’s HY4 demonstrator aircraft from 466 mi (750 km) to 932 mi (1500 km), marking a critical step towards the long-term decarbonization of mid- to long-range aviation.
“H2FLY are pioneers in their field, and we’re proud of them achieving this watershed moment in the use of liquid hydrogen to power aircraft,” said JoeBen Bevirt, Founder and CEO of Joby Aviation. “In the years to come, battery-electric and hydrogen-electric propulsion systems will enable us to build aircraft that are quieter and make mid- to long-range air travel possible with zero emissions. It’s critical we take action now and invest aggressively in these technologies for the health of our planet and future generations to come.”
The successful flights are the culmination of Project HEAVEN, a European-government-supported consortium assembled to demonstrate the feasibility of using liquid hydrogen in aircraft. The consortium is led by H2FLY and includes the partners Air Liquide, Pipistrel Vertical Solutions, the German Aerospace Center (DLR), EKPO Fuel Cell Technologies, and Fundación Ayesa.
Why it matters: Following this test flight milestone, H2FLY will increasingly focus on its path to commercialization. In June, H2FLY announced the development of its new fuel cell systems, which will be capable of providing their full power range at altitudes high enough to enable commercial hydrogen-electric aircraft, demonstrating real-world commercial aircraft applications. Hydrogen-electric platforms offer a longer range offering than all-electric vehicles and will do well to capture the mid/long range aircraft space.
Source: Joby Press Release
AIRTAXI World Congress is coming to San Francisco
AIRTAXI World Congress, an annual event hosted by Global Travel Investments, a UK-based marketing and strategy consultancy, will take place in San Francisco, CA this year from October 2-5. Last year in Istanbul, the event gathered 133 companies from 35 unique countries. This year, the event will place a dedicated focus on operationalization of air taxis & new air services, and...

AIRTAXI World Congress is coming to San Francisco

AIRTAXI World Congress, an annual event hosted by Global Travel Investments, a UK-based marketing and strategy consultancy, will take place in San Francisco, CA this year from October 2-5.
Last year in Istanbul, the event gathered 133 companies from 35 unique countries. This year, the event will place a dedicated focus on operationalization of air taxis & new air services, and the highlight will be a live demo of multiple vertical take-off and landing aircraft at the 50 million pax airport on October 5.

“We are excited to be working together with San Francisco International Airport, FAA, Archer, Joby Aviation and Signature Flight Support on integration of eVTOLs into SFO’s operational system to make vertical demo flights a reality this October, paving the way for the future of air taxis and urban eVTOL!’’ said Rose Sokolova, Chief Operation Officer at Global Travel Investments.

The event will also include a static aircraft display, panel discussions with industry leaders, skills workshops, and dedicated networking opportunities. Event organizers say that more than 500 leaders and stakeholders from across the urban air mobility (UAM) industry are expected to attend, including investors, aircraft manufacturers, suppliers, and operators, as well as representatives from airports and governments.
At least 275 companies will be represented at the event, including Archer, Beta Technologies, Ehang, Electra.aero, Eve, Joby, Lilium, Opener, Overair, Skydrive, Supernal, Volocopter, and Wisk.
AIRTAXI World Congress 2023, hosted by the San Francisco International Airport, is “the only event entirely dedicated to air taxis and urban eVTOLs.” It brings together not only suppliers and OEMs but also investors, operators, airlines, airports, vertiports, and urban infrastructure stakeholders for personalized, pre-arranged meetings. Registration for the event is open and the program can be found on the event website.
Why it’s important: “As 2025 rapidly approaches — the target date for most OEMs to certificate their aircraft — the focus is now shifting to the entry of air taxis into commercial airline service. The AIRTAXI World Congress will be the front and center of this change,” said Mike Howarth, chairman at Global Travel Investments. This event will be a spectacle for industry leaders and for future air taxi riders alike; it will demonstrate the progress many eVTOL developers are making on their aircraft and launching commercial operations with the 2025 target in mind.
KLM Takes Flight into the Electric Future: A Glimpse into Electric, Sustainable Aviation
In a groundbreaking event that offers a glimpse into the future of aviation, KLM Royal Dutch Airlines, in collaboration with the Electric Flying Connection (EFC) and the E-Flight Academy, recently hosted a two-day experience of electric flying. The event provided 18 lucky guests with the opportunity to take a trial flying lesson aboard the Pipistrel Velis Electro, a certified two-seat...

KLM Takes Flight into the Electric Future: A Glimpse into Electric, Sustainable Aviation

In a groundbreaking event that offers a glimpse into the future of aviation, KLM Royal Dutch Airlines, in collaboration with the Electric Flying Connection (EFC) and the E-Flight Academy, recently hosted a two-day experience of electric flying. The event provided 18 lucky guests with the opportunity to take a trial flying lesson aboard the Pipistrel Velis Electro, a certified two-seat electric aircraft. These flights operated between Lelystad Airport and Schiphol-Oost, offering valuable insights into electric flight logistics and the challenges it presents.

Jolanda Stevens, program manager for Zero Emission Aviation at KLM, emphasized the importance of testing new technologies in practice to make air transport more sustainable. She highlighted that the initiatives undertaken today could pave the way for scalable applications in the future.
Schiphol Airport was chosen as the starting point due to its status as KLM’s home base. The Pipistrel Velis Electro, while limited in range, presented a unique opportunity to explore the logistics and infrastructure required for electric flight. As electric aircraft need recharging, cooperation with airports and air traffic control is vital to ensure safe and efficient operations.
While the Pipistrel Velis Electro would never practically become a part of KLM’s route network, these trial flight lessons serve as an important stepping stone towards future electric aviation. Market experts predict that by 2035, larger electric aircraft capable of carrying 50 to 100 passengers with longer ranges will emerge. KLM’s commitment to researching various technologies, including electric, hydrogen, and hybrid propulsion, underscores its dedication to sustainable aviation.
KLM’s climate strategy is aligned with the journey towards Zero Emission Aviation. The airline recognizes the need for cleaner, quieter, and more fuel-efficient operations, and KLM’s journey along this path means not only adopting new aircraft but also developing infrastructure, optimizing airspace usage, and enhancing operational efficiency. Collaboration across the aviation value chain is essential to overcoming the challenges and uncertainties associated with this transition.
The Electric Flying Connection (EFC) is a trade association with over 50 members from various segments of the electric flight ecosystem, plays a pivotal role in advancing the sustainability of air transport. By connecting airlines, aircraft manufacturers, flight academies, infrastructure developers, and more, EFC fosters collaboration and innovation in the pursuit of greener skies.
Why it’s important: KLM’s recent electric flying experience demonstrates the airline’s commitment to pioneering sustainable aviation solutions. As the industry progresses, initiatives like these will contribute to a more eco-friendly and efficient future for aerial mobility and increase awareness to the general public about the progress being made in the industry.
Share this: