Results for: zeva
Zeva Aero Launches New eVTOL Line
Zeva Aero, the previous creator of a disc-shaped personal eVTOL aircraft, has announced that it is now developing an aircraft on a pre-exisiting airframe in order to achieve the most efficient path to commercialization. Zeva’s new aircraft, named the Argon, is based on a traditional fixed-wing Cessna 162 Skycatcher airframe. To convert the airframe to an eVTOL, Zeva will add...

Zeva Aero Launches New eVTOL Line

Zeva Aero, the previous creator of a disc-shaped personal eVTOL aircraft, has announced that it is now developing an aircraft on a pre-exisiting airframe in order to achieve the most efficient path to commercialization.

Zeva’s new aircraft, named the Argon, is based on a traditional fixed-wing Cessna 162 Skycatcher airframe. To convert the airframe to an eVTOL, Zeva will add supports that host vertical lift propellers to the tops of the wings, which will allow for electrically-powered take-off and landing.
With the vertical lift modifications to the aircraft, it is expected to have a 140mph cruise speed and a range of 330 nautical miles, with full electric vertical take-off and landing capability.
By using the pre-existing airframe rather than creating an entirely new aircraft, Zeva hopes to significantly reduce the time it will take to achieve aircraft certification as well the time it will take to reach the buyer market. The company plans to initially offer the Argon as an Experimental Amateur-Built kit, which it states represents almost 10% of the light aircraft fleet.
Zeva also hopes to maximize flight range while minimizing manufacturing, operational, and maintenance costs. The proven airframe should also provide increased safety as well as consumer confidence in the aircraft.
Although Zeva will now additionally focus on creating the Argon, development will continue on its other aircraft, the Z20. The Z20 has a disc shape, and uniquely, will use its own body shape in order to provide lift in forward flight. Zeva began prototype tests of this aircraft in 2022.
Through their products, Zeva hopes to capture the demand for private-ownership eVTOLs. Learn more about the aircraft on Zeva’s webite.
Why it’s important: This new product by Zeva indicates the company’s intentions to reach the market as soon as possible. By combining a proven and pre-certified airframe with new electric-lift capabilities, the company can provide a unique product that can reach buyers sooner rather than later. Additionally, by offering this aircraft as a kit, the company can save on manufacturing and delivery costs, while still providing an innovative eVTOL product to lead the market.
Source // Zeva Aero
Related:
- ZEVA Completes First eVTOL Test Flight (January 2022)
- ZEVA Aero Merges Assets With FabLab LLC (October 2022)
ZEVA Completes First eVTOL Test Flight
ZEVA, the electric vertical takeoff and landing (eVTOL) aircraft startup, has successfully achieved its first untethered, powered, controlled flight test for its full-scale ZEVA ZERO flying wing airframe. The major milestone for the Tacoma-based startup was captured in the following video in rural Pierce County, Washington on Sunday, January 9th, 2022 as part of its rigorous test program to achieve FAA...

ZEVA Completes First eVTOL Test Flight

ZEVA, the electric vertical takeoff and landing (eVTOL) aircraft startup, has successfully achieved its first untethered, powered, controlled flight test for its full-scale ZEVA ZERO flying wing airframe. The major milestone for the Tacoma-based startup was captured in the following video in rural Pierce County, Washington on Sunday, January 9th, 2022 as part of its rigorous test program to achieve FAA airworthiness certification.
The uncrewed ZEVA demonstration aircraft completed four flights, totaling more than four minutes of controlled hovering, simulated taxiing maneuvers at slow speeds, and limited vertical climb maneuvers. Its compact airframe is designed for a single pilot and is small enough to fit in a standard automobile parking space. The vehicle is projected to cruise at speeds of up to 160mph with a range of up to 50 miles, optimizing point-to-point travel while utilizing its eight zero-emission electric motor-driven propellers.
ZEVA experienced tremendous growth this year, with the addition of Gus Meyer as flight control engineer and several other key hires. The team completed more than 50 successful tethered flights, showcased the ZEVA ZERO aircraft at the Dubai Air Show in November, and was awarded a grant by Washington’s Joint Center for Aerospace Technology Innovation (JCATI) to work with Washington State University on ZEVA Aero’s aerodynamic configurations to optimize the vehicle’s thrust and controls. ZEVA has also worked with NASA in conjunction with its Urban Air Mobility Grand Challenge.
“The ZEVA team has done an incredible job with the design and manufacturing of this aircraft which was evidenced in this exceptionally smooth and successful first flight,” said Gus Meyer, the test pilot controlling the ZERO via a remote radio link. “This achievement is also a testament to the extraordinary talent and experience of the team, and the supportive partnerships that helped make this a reality.”
ZEVA will continue hover flight tests and advance to transition flight testing this spring to fine-tune the unique Superman-like trajectory of the aircraft design. The patent-pending design is expected to be available for pre-order for consumers for a $5,000 deposit as early as spring of this year, with an eventual price tag for the first production units estimated at under $250,000.
Why it matters: The importance of this milestone is best articulated by ZEVA CEO and Chairman Stephen Tibbits. “This is a huge inflection point for ZEVA as we join an exclusive set of proven flying eVTOL platforms, and a testament to the relentless hard work and ingenuity of our entire team over the past two and half years,” said Tibbitts. “We are dissecting our learnings from our critical first taxiing flight, which is a direct result of the support we’ve received from our investors and community, leading us to bring in additional talent to spearhead this historic moment. We are eager to continue to our next stage of hover flight testing on our road to certification and eventual autonomous flight allowing anyone, not just pilots, to access zero-emission point-to-point travel.”
ZEVA Aero Merges Assets With FabLab LLC
ZEVA Aero, a Tacoma Washington-based aircraft developer, has officially merged its assets with those of FabLab LLC, its former incubator. According to a recent press release, the merger gives ZEVA ownership and control of important assets such as 3D printers capable of printing carbon fiber composites, CNC machines, electronics lab equipment, machine tools, computing and network resources and much more....

ZEVA Aero Merges Assets With FabLab LLC

ZEVA Aero, a Tacoma Washington-based aircraft developer, has officially merged its assets with those of FabLab LLC, its former incubator.
According to a recent press release, the merger gives ZEVA ownership and control of important assets such as 3D printers capable of printing carbon fiber composites, CNC machines, electronics lab equipment, machine tools, computing and network resources and much more. Additionally, ZEVA Aero will gain revenue from existing contract manufacturing jobs at FabLab, and will take over the leasehold of the facility.

Rendering of the ZEVA Zero at full scale
ZEVA Aero is developer of the ZEVA Zero, a disc-shaped ‘blended body’ eVTOL that uses the body of the aircraft itself as a lift surface. ZEVA’s goal with the Zero is to make point-to-point personal air transportation accessible for people throughout the U.S. According to ZEVA Founder Steve Tibbitts, the company hopes to ‘have a ZEVA Zero in every garage by 2040’. The Zero prototype recently held a place at Boeing’s GoFly competition, where Tibbitts discussed the aircraft’s near-future potential for medical response and military applications.
In another article highlighting the recent wildfires in California, ZEVA’s team mentioned the potential benefits of using the Zero in emergency situations, particularly where firefighting ground vehicles might get trapped by flames or be unable to access key areas of the emergency situation. According to ZEVA, the Zero could get responders onto the scene faster than any other form of transportation with a 160mph cruise speed, and could even be remotely piloted in order to rescue people in danger. Other uses mentioned by ZEVA include resupply and location tracking.
Why it’s important: Although ZEVA Aero is a small company as compared to the aviation giants currently entering aerial mobility (Airbus, Boeing, Bell, etc), it has an incredibly unique concept with some clear design advantages over more traditional aircraft. While ZEVA may not be able to compete with these large companies for the shared air taxi business, the Zero could have great success in private ownership or specialized applications such as emergency rescue, surveillance, and more.
New Zeva Zero Prototype Images Revealed
New Images and information about the Zeva Zero, a flying-saucer shaped eVTOL, have been released. The Zeva Zero has been in development since the company’s founding in 2018. Unlike many eVTOLs, it features a disc-like structure, and is designed for a single passenger. When it transitions to horizontal flight, the entire body of the Zeva Zero tilts with its rotors,...

New Zeva Zero Prototype Images Revealed

New Images and information about the Zeva Zero, a flying-saucer shaped eVTOL, have been released.
The Zeva Zero has been in development since the company’s founding in 2018. Unlike many eVTOLs, it features a disc-like structure, and is designed for a single passenger. When it transitions to horizontal flight, the entire body of the Zeva Zero tilts with its rotors, and the fuselage itself is used for lift:

How the Zeva Zero will transition from vertical to horizontal flight.
Along with these latest images of the Zeva Zero under construction, the team has also released more details on how the personal aircraft will work. Specifically, the team highlights how its design will enable stable flight for passengers, describes how the aircraft’s body will create lift, and clarifies its aim at the ‘solo commuter’ market segment. Unlike many other companies, Zeva is making its aircraft for private ownership, giving riders access to direct point-to-point transport.
The Zeva team is right on schedule, having announced the future release of its prototype this week as early as August 2018. Zeva is participating in the Boeing GoFly personal flight competition, which challenges teams to build functional prototypes for flight demonstrations in early 2020. Notably, Boeing GoFly is offering $2 million in prizes to teams that can create a ““safe, quiet, ultra-compact, near-VTOL personal flying device capable of flying 20 miles while carrying a single person”.
The Zeva team completed its first small scale prototype in January of this year:
Why it’s important: The Zeva Zero is one of the only eVTOLs in development that’s designed for private ownership rather than a shared air taxi service. It’s disc-like design is also extremely unique; making it one of the only eVTOLs that uses its body to create lift. These design choices may help Zeva carve out an important segment of the growing industry.
Subscribe to TUP
Listen to the TUP Podcast
Zeva Zero’s First Flight
A sub-scale prototype of the Zeva Zero has taken to the skies. The prototype, which was flown outside of Tacoma, WA, where the Zeva team is based earned the company a Phase II spot in Boeing’s GoFly Competition. CFD analysis of the sub-scale model show that the full-scale prototype will fly at speeds approaching 160mph. The Zeva Zero takes off...

Zeva Zero’s First Flight

A sub-scale prototype of the Zeva Zero has taken to the skies.
The prototype, which was flown outside of Tacoma, WA, where the Zeva team is based earned the company a Phase II spot in Boeing’s GoFly Competition. CFD analysis of the sub-scale model show that the full-scale prototype will fly at speeds approaching 160mph.
The Zeva Zero takes off and lands vertically, and transitions to forward flight by slowly decreasing angle of attack and increasing airspeed until the body of the aircraft creates enough lift for forward flight. The Zeva Zero will be flown during the October 2019 fly-off in the Boeing GoFly competition, and will be competing for the $1 million purse.
The Zero is a personal air vehicle, or PAV – which means that it is not intended for large scale commercial operations, but rather as a device for personal mobility. A number of other teams and universities are competing in the Boeing GoFly competition, with a total of 10 companies winning Phase I of the competition. Zeva is currently sponsored by the ANSYS Startup Program and has selected an all-electric design for their contest entry.
Additionally, the Zero’s intended size may be an advantage of the craft: two can fit into a standard one-car garage, making them significantly smaller than the majority of eVTOLs that are intended to transport larger numbers of passengers.
Why it’s important: Zeva’s Zero aircraft adopts an unconventional approach to vertical takeoff and landing aircraft configurations – much like the Vought V-173 flying pancake, the aircraft uses a semi-circular body for lift generation – but unlike the V-173 is completely vertical during takeoff and landing. While it can only carry a single passenger, the goal of Zeva is not commercialization of eVTOL transport, but rather sharing the excitement of flight with the world.
Zeva Zero
Quick SummaryThe Zeva Zero eVTOL has a unique flat design that aims to carry passengers completely door to door. Notably, the Zero's body itself is used as a lift surface to reduce drag in horizontal flight. Zeva also has a design for a 'SkyDock', which will allow the Zero to dock directly to buildings its passengers are traveling to, in...

Zeva Zero

Quick Summary
The Zeva Zero eVTOL has a unique flat design that aims to carry passengers completely door to door. Notably, the Zero's body itself is used as a lift surface to reduce drag in horizontal flight. Zeva also has a design for a 'SkyDock', which will allow the Zero to dock directly to buildings its passengers are traveling to, in order to eliminate the need for 'last mile' transportation. The Zeva Zero carries a single passenger, who tilts with the Zero as it rotates from vertical mode to horizontal flight mode. Zeva was founded in April 2018 and is led by Steve Tibbitts, Managing Director of Incubator FabLab Tacoma.
ZEVA, based in Tacoma, Washington, USA
Steve Tibbitts
Zero
Stage of Development
Preliminary Design
Technical Details
Aircraft Type: Winged VTOL
Powerplant: All-electric
Range: 50 miles
Top Speed: 160 mph
Propeller Configuration: Four sets of two fan-propellors, carbon fiber body used as a lift surface
Passenger/Payload Capacity: 1 pilot/passenger, 220 lbs
Autonomy Level: Semi-autonomous with eventual full-autonomy
Dimensions: Undisclosed
Other Information
Vertical take-off and landing: The Zero lifts into the air using 8 vertical rotors. Its coin-like structure allows for minimal drag during vertical mode take-off mode.
Fixed wing flight: From vertical take-off mode, the entirety of the Zero rotates into a horizontal postion so that its body may be used as a wing for fixed-wing flight.
Regulation: Although Zeva has not announced any work with regulators yet, it did build a prototype for the GoFly competition sponsored by Boeing in 2019.
Funding: Zeva is currently sponsored by the ANSYS Startup Program.
Our Take on Zeva
Although the Zeva Zero is currently still working on its full-scale prototype, its design highly differentiates it from most other eVTOLs on the market. The aircraft's body itself doubles as a lift surface, which reduces drag problems that other aircraft may have. Also unique is Zeva's SkyDock system, which eliminates the need for 'last mile' transportation; as well as the aircraft's small size; Zeva claims that two Zeros can fit in a traditional car garage. However, the uniqueness of the Zeva's design may also make airworthiness certification more of a challenge than for other eVTOLs that may be more similar to traditional helicopters or airplanes. Ultimately, Zeva has a very innovative design, but the integration of its technology may take some time.
References
The Latest News from TransportUP
Skyports and Equinor Partner to Improve Offshore Logistics with Electric Drone Deliveries
September 17, 2023SkyDrive and Lessor Solyu Sign MOU for 50 eVTOL Aircraft
September 17, 2023BETA Technologies to install first electric aircraft charger at Eglin Air Force Base
September 17, 2023The Zeva Zero Will Release a Prototype in October 2019
Founded in April 2018, Zeva Aero has a pioneering design for the Zeva Zero eVTOL. The Zero has a unique flat design, and aims to carry passengers completely door to door. While not many photos have been released of the Zeva, it features a tilting flight system. It can transition from a hover mode to a horizontal flight mode like...

The Zeva Zero Will Release a Prototype in October 2019

Founded in April 2018, Zeva Aero has a pioneering design for the Zeva Zero eVTOL. The Zero has a unique flat design, and aims to carry passengers completely door to door.
While not many photos have been released of the Zeva, it features a tilting flight system. It can transition from a hover mode to a horizontal flight mode like other VTOL designs. But in the Zero, the passenger tilts with the wing. The coin-like structure of the Zero improves vertical drag as it rises, and it’s minimalistic approach reduces weight. However, the Zero only carries a single passenger.
The Zero comes with the self dubbed ‘SkyDock’ docking system. SkyDock allows the Zero to park itself on the side of buildings themselves. This would enable passengers to exit the Zero to walk directly into their office or home–almost like a door that can open to anywhere. It eliminates the need for last mile transportation, making the journey from A to B even more efficient.
The Zeva team is still in the design phase, but is looking for $1.5 million in funding. It will produce a prototype for the GoFly competition sponsored by Boeing in October 2019. The GoFly Competion specifically only allows near-VTOL aircraft that can fit an eight-and-a-half foot sphere.
Zeva is led by Steve Tibbitts, Managing Director of Incubator FabLab Tacoma. FabLab provides a workspace and prototyping tools for innovators, artists, and DIY enthusiasts. Previously, Tibbitts worked as a director at Integrated Device Technology Inc, and as a Design Manager at Fox Electronics. The rest of the Zeva team includes electrical and mechanical engineers as well as experts in 3D design, composites, and software.
Why it’s important: As VTOLs become more prevalent many companies will begin to replicate past designs. Especially in a new industry, continual re-iteration is crucial to achieve the best design. Zeva’s unique design and docking system rethinks the utility of existing VTOLS even while they are still in their testing stages.
AI’s Role in Predictive Flight Path Monitoring for Aerial Mobility
Innovation is soaring to new heights in aerial mobility, and recent advances in artificial intelligence (AI) are challenging the ways traditional methods of flight path monitoring. While there is the potential to significantly enhance safety and efficiency in our increasingly crowded skies, there are also challenges related to how cutting-edge AI technologies can be safely and responsibly applied to new...

AI’s Role in Predictive Flight Path Monitoring for Aerial Mobility

Innovation is soaring to new heights in aerial mobility, and recent advances in artificial intelligence (AI) are challenging the ways traditional methods of flight path monitoring. While there is the potential to significantly enhance safety and efficiency in our increasingly crowded skies, there are also challenges related to how cutting-edge AI technologies can be safely and responsibly applied to new aircraft.

The Challenge of Aerial Mobility
Aerial mobility continues to make inroads on the path to widespread certification and utilization of aircraft to decongest urban areas and more efficiently transport passengers the last 50nm of their trips. With the rapid growth of drones, air taxis, and autonomous aircraft, cities around the world are embracing the potential for faster, cleaner, and more efficient transportation. However, this comes with its own set of challenges, particularly in managing and coordinating the movement of numerous airborne vehicles in urban environments.
AI-Powered Predictive Flight Path Monitoring
AI-driven predictive flight path monitoring has a potential to be a game-changer in this space, but with serious complications if implementation isn’t nearly flawless. AI algorithms, empowered by deep learning and real-time data analysis, enable aerial mobility systems to anticipate and adapt to changing conditions. A potential rosy future could include:
- Collision Avoidance: AI algorithms can predict potential conflicts between aerial vehicles and suggest alternative routes to avoid collisions. This proactive approach significantly reduces the risk of accidents, making urban air travel safer for everyone.
- Weather Forecasting: AI can process vast amounts of weather data in real-time, allowing aircraft to adjust their routes to avoid turbulence, storms, or adverse conditions. This not only enhances safety but also ensures smoother and more comfortable rides for passengers.
- Traffic Management: AI-powered traffic management systems can dynamically allocate airspace and landing zones, optimizing routes to minimize congestion and delays. This promotes efficient use of airspace, reducing travel times and environmental impact.
- Predictive Maintenance: AI can predict maintenance needs for aerial vehicles by analyzing sensor data. This preemptive approach ensures that aircraft are in optimal condition, reducing the risk of in-flight mechanical failures.
While the above list of advances sounds incredibly convenient, it also reflects what many sight as an idyllic view of AI’s implementation in aerial mobility. There are numerous challenges to face, including sporadic, erratic flight paths from other aircraft, regulatory integration and certification, as well as ethical and privacy concerns, especially for those not wanting the data from their flights to be shared for privacy reasons. Finally, the methods by which these algorithms are trained must be ironclad, and evasive actions cannot also be prescribed in situations where immediate intervention is necessary.
As many OEMs adopt hybridized approaches to their powertrains, leveraging the best of both internal combustion and battery technology, a similar approach is likely warranted for the most successful of the aerial mobility aircraft: provisioned for future growth with capabilities that can eventually be fully autonomous, but with the option for remote or in-aircraft piloting to occur to assuage passenger concerns and to meet current regulatory requirements.
Why it’s important: As AI continues to evolve, the future of aerial mobility may evolve to leverage this technology as well. AI-driven predictive flight path monitoring may enhance safety but also paves the way for increased automation and autonomy in air travel, if implemented gradually and successful. The runway to AI integration into aviation is a long one, but slow incremental steps will yield benefit.
Skyports and Equinor Partner to Improve Offshore Logistics with Electric Drone Deliveries
In a new collaboration, Skyports Drone Services, a drone logistics, survey, and monitoring operations company, has teamed up with Norwegian energy company Equinor to lead a new project in the aerial mobility sector. This partnership aims to improve cargo logistics for offshore oil installations in the North Sea, setting a new standard for efficiency, safety, and sustainability. The project, which...

Skyports and Equinor Partner to Improve Offshore Logistics with Electric Drone Deliveries

In a new collaboration, Skyports Drone Services, a drone logistics, survey, and monitoring operations company, has teamed up with Norwegian energy company Equinor to lead a new project in the aerial mobility sector. This partnership aims to improve cargo logistics for offshore oil installations in the North Sea, setting a new standard for efficiency, safety, and sustainability.
The project, which commenced in early September, is the first-ever daily, on-demand drone delivery service initiated from shore to offshore oil rigs and uses highly automated cargo drones developed by Swoop Aero. The drones can cover distances of up to 114 kilometers and are currently shuttling cargo between Equinor’s Mongstad processing center on the west coast of Norway and three installations in the Gullfaks oil field.

Skyports Drone Services has conducted numerous flights with hundreds more planned throughout the two-month trial. These flights are transporting a diverse range of cargo; from spare parts and equipment to care packages, showcasing the versatility of drone logistics.
One of the most notable advantages of uncrewed drone services is their cost-efficiency, speed of deployment, and enhanced safety compared to traditional transportation methods. These drones can operate in challenging visibility conditions, including fog, pending regulatory approvals – a development that holds immense promise for the aerial mobility industry.
Moreover, the environmental benefits of electric drones is an important consideration for this operation as well. With zero operating emissions, they are a profound leap toward sustainability in the offshore sector.
The trial also highlights the potential for scaling drone services with minimal human intervention. Remote piloting by a small Skyports Drone Services team from Equinor’s ROC in Bergen ensures seamless operations. Equinor staff on the installations have received training to handle cargo, batteries, and drone interactions, underlining the adaptability of the system.
Initial results of the trial have been positive, paving the way for potential expansion to additional installations, thus shaping the future of aerial mobility in the offshore energy sector.
Alex Brown, Director of Skyports Drone Services, emphasized the project’s significance: “This project with Equinor proves that drone delivery can offer a safer, cost-effective, more sustainable alternative to conventional transport methods in offshore environments. We are currently exploring how we can expand this groundbreaking work into adjacent sectors such as offshore wind and ship resupply.”
The project’s success has been made possible through collaboration with Avinor and the Civil Aviation Authority of Norway, ensuring the necessary flight permissions are secured.
Why it’s important: The partnership between Skyports Drone Services and Equinor signifies a turning point in the aerial mobility industry. The collaboration showcases how electric drones can revolutionize cargo logistics, bringing new levels of efficiency, safety, and sustainability to offshore operations. As the trial continues to flourish, it opens doors for further innovation and exploration of aerial mobility solutions in adjacent sectors, ultimately helping to shape the future of logistics in challenging environments.
SkyDrive and Lessor Solyu Sign MOU for 50 eVTOL Aircraft
Japanese-based eVTOL maker, SkyDrive, has announced an MOU with Solyu, an aircraft leasing company in Korea, for 50 eVTOL aircraft. Solyu is a lessor based in Korea run by team with decades of experience in the aircraft leasing and finance industry with a focus on providing customers with zero emissions vehicles such as eVTOL, eCTOL, and eSTOL. SkyDrive is currently...

SkyDrive and Lessor Solyu Sign MOU for 50 eVTOL Aircraft

Japanese-based eVTOL maker, SkyDrive, has announced an MOU with Solyu, an aircraft leasing company in Korea, for 50 eVTOL aircraft. Solyu is a lessor based in Korea run by team with decades of experience in the aircraft leasing and finance industry with a focus on providing customers with zero emissions vehicles such as eVTOL, eCTOL, and eSTOL.

SkyDrive is currently developing a three-seat electric, vertical takeoff and landing aircraft called “SKYDRIVE.” Its eVTOL is in the process of acquiring its Japan Civil Aviation Bureau (JCAB) certification.
In Korea, the metropolitan area faces a problem of severe traffic congestion, and the Korean government formed the Korea Urban Air Mobility (K-UAM) Roadmap, expecting that the time and social costs can be reduced by 70%. The government also promotes the plan for public-private joint demonstration project, the K-UAM Grand Challenge. Solyu believes it is important to promote the use of electric, zero-emission vehicles in Korea to accelerate the K-UAM goal and agreed on the pre-order of SkyDrive eVTOL.
SkyDrive and Solyu continue to evaluate commercial eVTOL considerations such as vertiports, routes, infrastructure requirements, and ecosystems with the Korean government and other interested stakeholders to launch new mobility solutions in Korea.
Solyu Company President, Andrew Claerbout, commented on the memorandum of understanding, “The eVTOL market will bring opportunities for reducing global emissions and increasing traveler convenience. We’re honored to work with SkyDrive and the award-winning SD-05 to develop this global market.”
Why it’s important: Korea is one of the most dense urban markets in the world and is a prime market for the eVTOL industry. With a fleet of 50 SkyDrive eVTOL aircraft, Solyu has an opportunity to leverage electrified aviation and offer low-cost, emission free travel in the area.
BETA Technologies to install first electric aircraft charger at Eglin Air Force Base
The United States Department of Defense (DoD) has entered into an expansive partnership with BETA Technologies to install the first ever electric aircraft charging station at Eglin Air Force Base in Florida. Initiated in 2020, this partnership has been instrumental in expediting the adoption of electric aviation within both the United States military and the broader commercial aviation sector. An...

BETA Technologies to install first electric aircraft charger at Eglin Air Force Base

The United States Department of Defense (DoD) has entered into an expansive partnership with BETA Technologies to install the first ever electric aircraft charging station at Eglin Air Force Base in Florida.

Initiated in 2020, this partnership has been instrumental in expediting the adoption of electric aviation within both the United States military and the broader commercial aviation sector. An illustrious milestone in this journey saw BETA Technologies being recognized as the foremost electric aircraft developer to secure an airworthiness certificate for manned flight from the military. Furthermore, they have conducted the sole piloted qualitative evaluation flights, featuring esteemed test pilots from the United States Air Force and Army.
This partnership, dedicated to evaluating the feasible mission capabilities and broad applicability of BETA’s electric aircraft and chargers, is set to persist with the forthcoming introduction of BETA’s ALIA aircraft to Eglin Air Force Base this autumn. Notably, BETA’s versatile and intermodal electric charger has demonstrated the remarkable capacity to recharge an electric aircraft in under an hour.
BETA originally was in pursuit of developing its eVTOL aircraft version, but recently decided to also certify a CTOL version, Alia, which will be delivered to Elgin Air Force Base. Meanwhile other eVTOL companies including Joby and Archer have also committed to delivering their respective air taxis to other Air Force bases near the end of 2023 or early 2024.
Related:
- UPS and BETA Technologies to test UAE electric flight deliveries
- Beta Technologies to Enhance Focus on Electric Aircraft Certification
Bearing conformity to the established standards jointly agreed upon by a substantial segment of the Advanced Air Mobility (AAM) industry, as delineated in the recent ‘Interoperability of Electric Charging Infrastructure’ whitepaper by the General Aviation Manufacturers Association (GAMA), BETA’s chargers exhibit the versatility to support an array of electric aircraft while also accommodating ground electric vehicles.

“The DoD, and specifically AFWERX’s Agility Prime team, have been invaluable partners to us for the past several years, offering deep insights that have helped us continue to progress our technology,” said Beta founder and CEO Kyle Clark. “The installation of this charger is an enabling step as the DOD looks to transition to a more sustainable fleet. We look forward to using it to charge our aircraft later this year during planned on-base experimentation with the Air Force at Duke Airfield.”
“Charging station installation is a critical step to unleash test and experimentation with the DoD to leverage emerging electric aviation technology as a capability for the warfighter,” said Maj Anthony Zartman, Agility Prime’s program manager and team lead. “Two charging test sites will be set up by the end of the calendar year, marking the first multimodal charging capabilities for the Air Force. Further, the charging stations will provide an opportunity to explore the utility of electric vehicle fleet modernization as well as base and flight line support equipment to improve energy use and reduce emissions.”
Why it’s important: This pioneering Level 3 DC fast-charging facility is poised to provide essential support for on-site electric vehicle experimentation, signifying the latest advancement in the enduring collaboration between BETA Technologies and the DoD through its esteemed AFWERX Agility Prime Program.
Bristow Group and Volocopter Join Forces to Advance Aerial Mobility with Planned UAM Services
Bristow Group Inc, a global leader in vertical flight solutions, and Volocopter have embarked on a collaboration that sets the stage for passenger and cargo services utilizing electric vertical takeoff and landing (eVTOL) aircraft in the U.S. and U.K. The partnership was announced last week and includes Bristow’s firm order for two VoloCity aircraft, with an option for an additional...

Bristow Group and Volocopter Join Forces to Advance Aerial Mobility with Planned UAM Services

Bristow Group Inc, a global leader in vertical flight solutions, and Volocopter have embarked on a collaboration that sets the stage for passenger and cargo services utilizing electric vertical takeoff and landing (eVTOL) aircraft in the U.S. and U.K.

The partnership was announced last week and includes Bristow’s firm order for two VoloCity aircraft, with an option for an additional 78, once certified. Together, Volocopter and Bristow are poised to build a robust UAM ecosystem, encompassing regulatory discussions, infrastructure development, and local partnerships.
The scope of their joint development agreement is broad: covering commercial, operational, and eVTOL aircraft maintenance services. This includes adapting Volocopter’s proprietary digital platform, VoloIQ, to ensure the efficiency of Bristow’s future operations.
The eVTOL sector is rapidly evolving, driven by its emission-free flights and ultra-low noise signatures. With the VoloCity joining Bristow’s fleet, there are undoubtedly an array of new urban routes and service possibilities under study.
Volocopter aims to secure final certification from the European Union Aviation Safety Agency (EASA) in 2024, with FAA certification in the U.S. following shortly thereafter, potentially opening doors for commercial UAM services.
Dave Stepanek, Bristow’s Executive Vice President and Chief Transformation Officer, expressed his excitement, saying, “Launching this collaborative effort with Volocopter marks a major milestone in Bristow’s effort to usher in a new era of vertical transportation solutions.” He further highlighted Volocopter’s pragmatic approach to certification and innovative aircraft design.
Christian Bauer, CFO & CCO of Volocopter, emphasized the significance of this partnership, given Bristow’s vast experience in bringing new aircraft into service. Bauer stated, “Our partnership with Bristow and the firm VoloCity orders received propels us forward as we unlock new markets.”
Why it’s important: With more than 500 pre-orders, including nearly 30 firm orders from partners, Volocopter is forging a path toward a more accessible and sustainable aviation future. Together with Bristow, Volocopter is moving forward to an ultimate goal of wide access to the benefits of aviation, where flying becomes not just a dream but a reality for people across the globe. In this bold venture, innovation and experience unite, promising a future where UAM services revolutionize the way we travel, connect, and experience the world.
Iris Automation and uAvionix Partner to Elevate Aerial Mobility Safety
In a significant stride towards enhancing the safety and efficiency of unmanned aerial systems (UAS) operations, Iris Automation and uAvionix have unveiled a strategic partnership aimed at revolutionizing Command and Control (C2) and Detect and Avoid (DAA) services for the aerial mobility industry. The collaboration will feature Iris Automation’s ground-based collision avoidance data, the Casia G, integrated into uAvionix’s SkyLine...

Iris Automation and uAvionix Partner to Elevate Aerial Mobility Safety

In a significant stride towards enhancing the safety and efficiency of unmanned aerial systems (UAS) operations, Iris Automation and uAvionix have unveiled a strategic partnership aimed at revolutionizing Command and Control (C2) and Detect and Avoid (DAA) services for the aerial mobility industry. The collaboration will feature Iris Automation’s ground-based collision avoidance data, the Casia G, integrated into uAvionix’s SkyLine services, delivering unparalleled airspace awareness and connectivity for small UAS.

One of the critical challenges in the skies today lies in distinguishing between cooperative aircraft, which share their positional data through technologies like ADS-B, and non-cooperative aircraft that do not. uAvionix has emerged as a leader in cooperative aircraft detection, leveraging ADS-B IN solutions for UAS. Now, with the added capabilities of Iris Automation’s Casia G, operators will have a holistic solution for Beyond Visual Line of Sight (BVLOS) operations.
The Casia G system, powered by advanced computer vision and artificial intelligence, swiftly detects and classifies intruder aircraft, offering vital response time to ensure safety. This ground-based variant provides expansive coverage, ensuring scalable coverage through strategically deployed nodes. By fusing the data produced by Casia G with ADS-B data from uAvionix, operators will enjoy comprehensive situational awareness, going beyond what single-sensor-based systems can provide.
Christian Ramsey, Managing Director of uAvionix uncrewed Systems, characterized the partnership, stating “Integration of the Iris’ Casia G data is another step toward enabling scalable and achievable Beyond Visual Line of Sight (BVLOS) flights for UAS operators.” With this combined solution, operators can confidently navigate the complexities of low-altitude airspace, mitigating the risk of incidents and near-mid-air collisions.
Jon Damush, CEO of Iris Automation, expressed excitement about the collaboration, noting that “operators will now have a turn-key solution for their BVLOS operations.” The partnership is actively progressing towards integrating Casia G data into the SkyLine service through field tests and operational scenarios. The resulting advanced airspace awareness and command and control capabilities are expected to become available to UAS operators later this year.
Why it’s important: As the aerial mobility industry continues to evolve, safety and efficiency remain paramount. The alliance between Iris Automation and uAvionix is poised to contribute significantly to the sector’s growth by providing operators with the tools they need to navigate the skies with confidence and reliability. It’s a pivotal step towards a future where aerial mobility is not just a dream but a safe and accessible reality.
H2FLY Completes First Piloted Flight of Liquid Hydrogen-Electric Aircraft
Joby subsidiary, H2FLY has announced successful completion of the world first piloted flight of a liquid hydrogen-powered electric aircraft. H2FLY, acquired by Joby in 2021, continues to lead the industry on the development and testing of hydrogen aviation propulsion systems. The company completed a series of piloted flights with its HY4 demonstrator aircraft, including one that lasted more than three...

H2FLY Completes First Piloted Flight of Liquid Hydrogen-Electric Aircraft

Joby subsidiary, H2FLY has announced successful completion of the world first piloted flight of a liquid hydrogen-powered electric aircraft.
H2FLY, acquired by Joby in 2021, continues to lead the industry on the development and testing of hydrogen aviation propulsion systems. The company completed a series of piloted flights with its HY4 demonstrator aircraft, including one that lasted more than three hours, fitted with a hydrogen-electric fuel cell propulsion system and liquid hydrogen that powered it for the entire flight.

The flights demonstrate the viability of using cryogenically-stored liquid hydrogen instead of gaseous hydrogen, which enables significantly lower tank weights and volume, leading to longer range. The successful installation and demonstration of flight with liquid hydrogen is believed to increase the range of H2FLY’s HY4 demonstrator aircraft from 466 mi (750 km) to 932 mi (1500 km), marking a critical step towards the long-term decarbonization of mid- to long-range aviation.
“H2FLY are pioneers in their field, and we’re proud of them achieving this watershed moment in the use of liquid hydrogen to power aircraft,” said JoeBen Bevirt, Founder and CEO of Joby Aviation. “In the years to come, battery-electric and hydrogen-electric propulsion systems will enable us to build aircraft that are quieter and make mid- to long-range air travel possible with zero emissions. It’s critical we take action now and invest aggressively in these technologies for the health of our planet and future generations to come.”
The successful flights are the culmination of Project HEAVEN, a European-government-supported consortium assembled to demonstrate the feasibility of using liquid hydrogen in aircraft. The consortium is led by H2FLY and includes the partners Air Liquide, Pipistrel Vertical Solutions, the German Aerospace Center (DLR), EKPO Fuel Cell Technologies, and Fundación Ayesa.
Why it matters: Following this test flight milestone, H2FLY will increasingly focus on its path to commercialization. In June, H2FLY announced the development of its new fuel cell systems, which will be capable of providing their full power range at altitudes high enough to enable commercial hydrogen-electric aircraft, demonstrating real-world commercial aircraft applications. Hydrogen-electric platforms offer a longer range offering than all-electric vehicles and will do well to capture the mid/long range aircraft space.
Source: Joby Press Release
AIRTAXI World Congress is coming to San Francisco
AIRTAXI World Congress, an annual event hosted by Global Travel Investments, a UK-based marketing and strategy consultancy, will take place in San Francisco, CA this year from October 2-5. Last year in Istanbul, the event gathered 133 companies from 35 unique countries. This year, the event will place a dedicated focus on operationalization of air taxis & new air services, and...

AIRTAXI World Congress is coming to San Francisco

AIRTAXI World Congress, an annual event hosted by Global Travel Investments, a UK-based marketing and strategy consultancy, will take place in San Francisco, CA this year from October 2-5.
Last year in Istanbul, the event gathered 133 companies from 35 unique countries. This year, the event will place a dedicated focus on operationalization of air taxis & new air services, and the highlight will be a live demo of multiple vertical take-off and landing aircraft at the 50 million pax airport on October 5.

“We are excited to be working together with San Francisco International Airport, FAA, Archer, Joby Aviation and Signature Flight Support on integration of eVTOLs into SFO’s operational system to make vertical demo flights a reality this October, paving the way for the future of air taxis and urban eVTOL!’’ said Rose Sokolova, Chief Operation Officer at Global Travel Investments.

The event will also include a static aircraft display, panel discussions with industry leaders, skills workshops, and dedicated networking opportunities. Event organizers say that more than 500 leaders and stakeholders from across the urban air mobility (UAM) industry are expected to attend, including investors, aircraft manufacturers, suppliers, and operators, as well as representatives from airports and governments.
At least 275 companies will be represented at the event, including Archer, Beta Technologies, Ehang, Electra.aero, Eve, Joby, Lilium, Opener, Overair, Skydrive, Supernal, Volocopter, and Wisk.
AIRTAXI World Congress 2023, hosted by the San Francisco International Airport, is “the only event entirely dedicated to air taxis and urban eVTOLs.” It brings together not only suppliers and OEMs but also investors, operators, airlines, airports, vertiports, and urban infrastructure stakeholders for personalized, pre-arranged meetings. Registration for the event is open and the program can be found on the event website.
Why it’s important: “As 2025 rapidly approaches — the target date for most OEMs to certificate their aircraft — the focus is now shifting to the entry of air taxis into commercial airline service. The AIRTAXI World Congress will be the front and center of this change,” said Mike Howarth, chairman at Global Travel Investments. This event will be a spectacle for industry leaders and for future air taxi riders alike; it will demonstrate the progress many eVTOL developers are making on their aircraft and launching commercial operations with the 2025 target in mind.
Share this: